Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Premise Of The Study: The depiction of polyploid speciation as instantaneous implies that strong prezygotic and postzygotic isolation form as a direct result of whole-genome duplication. However, the direct vs. indirect contributions of genome duplication to phenotypic divergence and prezygotic isolation are rarely quantified across multiple reproductive barriers.
Methods: We compared the phenotypic differences between diploid and both naturally occurring and synthesized tetraploids (neotetraploids) of the plant Chamerion angustifolium. Using this information and additional published values for this species, we compared the magnitude of isolation (ecological, flowering, pollinator, and gametic) between diploids and natural-occurring tetraploids to that between diploids and neotetraploids.
Key Results: Differences among ploidy cytotypes were observed for eight of 12 vegetative and reproductive traits measured. Neotetraploids resembled diploids but differed from natural tetraploids with respect to four traits, including flowering time and plant height. Diploid-neotetraploid (2x-4xneo) experimental arrays exhibited lower pollinator fidelity to cytotype and seed set compared with 2x-4xnat arrays. Based on these results and published evidence, reproductive isolation between diploids and neotetraploids across all four life stages averaged 0.48 and deviated significantly from that between diploids and natural tetraploids (RI = 0.96).
Conclusions: Genome duplication causes phenotypic shifts and contributes directly to prezygotic isolation for some barriers (gametic isolation) but cannot account for the cumulative isolation from diploids observed in natural tetraploids. Therefore, conditions for species formation through genome duplication are not necessarily instantaneous and selection to strengthen prezygotic barriers in young polyploids is critical for the establishment of polyploid species in sympatry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3732/ajb.1600097 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!