AI Article Synopsis

Article Abstract

Key Points: Spinocerebellar ataxia type 1 (SCA1) is a progressive neurodegenerative disease caused by a gene defect, leading to movement disorder such as cerebellar ataxia. It remains largely unknown which functional defect contributes to the cerebellar ataxic phenotype in SCA1. In this study, we report progressive dysfunction of metabotropic glutamate receptor (mGluR) signalling, which leads to smaller slow synaptic responses, reduced dendritic Ca signals and impaired synaptic plasticity at cerebellar synapses, in the early disease stage of SCA1 model mice. We also show that enhancement of mGluR signalling by a clinically available drug, baclofen, leads to improvement of motor performance in SCA1 mice. SCA1 is an incurable disease with no effective treatment, and our results may provide mechanistic grounds for targeting mGluRs and a novel drug therapy with baclofen to treat SCA1 patients in the future.

Abstract: Spinocerebellar ataxia type 1 (SCA1) is a progressive neurodegenerative disease that presents with cerebellar ataxia and motor learning defects. Previous studies have indicated that the pathology of SCA1, as well as other ataxic diseases, is related to signalling pathways mediated by the metabotropic glutamate receptor type 1 (mGluR1), which is indispensable for proper motor coordination and learning. However, the functional contribution of mGluR signalling to SCA1 pathology is unclear. In the present study, we show that SCA1 model mice develop a functional impairment of mGluR signalling which mediates slow synaptic responses, dendritic Ca signals, and short- and long-term synaptic plasticity at parallel fibre (PF)-Purkinje cell (PC) synapses in a progressive manner from the early disease stage (5 postnatal weeks) prior to PC death. Notably, impairment of mGluR-mediated dendritic Ca signals linearly correlated with a reduction of PC capacitance (cell surface area) in disease progression. Enhancement of mGluR signalling by baclofen, a clinically available GABA receptor agonist, led to an improvement of motor performance in SCA1 mice and the improvement lasted ∼1 week after a single application of baclofen. Moreover, the restoration of motor performance in baclofen-treated SCA1 mice matched the functional recovery of mGluR-mediated slow synaptic currents and mGluR-dependent short- and long-term synaptic plasticity. These results suggest that impairment of synaptic mGluR cascades is one of the important contributing factors to cerebellar ataxia in early and middle stages of SCA1 pathology, and that modulation of mGluR signalling by baclofen or other clinical interventions may be therapeutic targets to treat SCA1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5199750PMC
http://dx.doi.org/10.1113/JP272950DOI Listing

Publication Analysis

Top Keywords

mglur signalling
28
cerebellar ataxia
16
sca1
14
spinocerebellar ataxia
12
ataxia type
12
model mice
12
slow synaptic
12
dendritic signals
12
synaptic plasticity
12
motor performance
12

Similar Publications

BK channels mediate a presynaptic form of mGluR-LTD in the neonatal hippocampus.

Proc Natl Acad Sci U S A

January 2025

Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile.

BK channels can control neuronal function, but their functional relevance in activity-dependent changes of synaptic function remains elusive. Here, we report that repetitive low-frequency stimulation activates BK channels through 12(S)HPETE, an arachidonic acid metabolite, produced downstream of postsynaptic metabotropic glutamate receptors (mGluRs) to trigger long-term depression (LTD) at CA3-CA1 synapses in hippocampal slices from P7-P10 mice. Activation of BK channels is subunit specific, as paxilline but not iberiotoxin blocked mGluR-LTD.

View Article and Find Full Text PDF

A-mediated synaptic glutamate dynamics and calcium dynamics in astrocytes associated with Alzheimer's disease.

Cogn Neurodyn

December 2024

School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710119 People's Republic of China.

The accumulation of amyloid peptide is assumed to be one of the main causes of Alzheimer's disease . There is increasing evidence that astrocytes are the primary targets of A. A can cause abnormal synaptic glutamate, aberrant extrasynaptic glutamate, and astrocytic calcium dysregulation through astrocyte glutamate transporters facing the synaptic cleft (GLT-syn), astrocyte glutamate transporters facing the extrasynaptic space (GLT-ess), metabotropic glutamate receptors in astrocytes (mGluR), N-methyl-D-aspartate receptors in astrocytes (NMDAR), and glutamatergic gliotransmitter release (Glio-Rel).

View Article and Find Full Text PDF

Anxiety is a severe social problem. It is a disease entity that occurs alone or accompanies other diseases such as depression, phobia, or post-traumatic stress disorder. Our earlier studies demonstrated that blockage of arachidonic acid (AA) pathway via inhibition of cyclooxygenase-2 (COX-2) enzyme can modulate mGluRs-induced anxiety-like behavior.

View Article and Find Full Text PDF

Here we describe a type of depolarising plateau potentials (PPs; sustained depolarisations outlasting the stimuli) in layer 2/3 pyramidal cells (L2/3PC) in rat prefrontal cortex (PFC) slices, using whole-cell somatic recordings. To our knowledge, this PP type has not been described before. In particular, unlike previously described plateau potentials that originate in the large apical dendrite of L5 cortical pyramidal neurons, these L2/3PC PPs are generated independently of the apical dendrite.

View Article and Find Full Text PDF

Microparticles Mediate Lipopolysaccharide-induced Inflammation and Chronic Pain in Mouse Model.

Neuromolecular Med

November 2024

Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India.

Recent evidence highlights microparticles (MPs) as crucial players in intercellular communication among immune cells, yet their role in inflammation-induced chronic pain remains unexplored. In this study, we investigated the involvement of MPs in the progression of inflammation and associated pain using mouse models of chronic neuroinflammation induced by repeated intraperitoneal injections of lipopolysaccharide (LPS; 1 mg/kg for four consecutive days) in C57BL/6 mice. Chronic pain was analyzed at baseline (day 0) and on day 21 post-LPS injection using von Frey and the hot metal plate tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!