The role of cereblon (CRBN) in T cells is not well understood. We generated mice with a deletion in Crbn and found cereblon to be an important antagonist of T-cell activation. In mice lacking CRBN, CD4(+) T cells show increased activation and IL-2 production on T-cell receptor stimulation, ultimately resulting in increased potassium flux and calcium-mediated signaling. CRBN restricts T-cell activation via epigenetic modification of Kcna3, which encodes the Kv1.3 potassium channel required for robust calcium influx in T cells. CRBN binds directly to conserved DNA elements adjacent to Kcna3 via a previously uncharacterized DNA-binding motif. Consequently, in the absence of CRBN, the expression of Kv1.3 is derepressed, resulting in increased Kv1.3 expression, potassium flux, and CD4(+) T-cell hyperactivation. In addition, experimental autoimmune encephalomyelitis in T-cell-specific Crbn-deficient mice was exacerbated by increased T-cell activation via Kv1.3. Thus, CRBN limits CD4(+) T-cell activation via epigenetic regulation of Kv1.3 expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4978309PMC
http://dx.doi.org/10.1073/pnas.1502166113DOI Listing

Publication Analysis

Top Keywords

t-cell activation
20
cd4+ t-cell
12
epigenetic regulation
8
kv13 potassium
8
potassium channel
8
potassium flux
8
activation epigenetic
8
kv13 expression
8
t-cell
7
crbn
7

Similar Publications

Natural killer (NK) cells can control metastasis through cytotoxicity and IFN-γ production independently of T cells in experimental metastasis mouse models. The inverse correlation between NK activity and metastasis incidence supports a critical role for NK cells in human metastatic surveillance. However, autologous NK cell therapy has shown limited benefit in treating patients with metastatic solid tumors.

View Article and Find Full Text PDF

Combination therapy with anti-angiogenic drugs and immune checkpoint inhibitors has shown enhanced clinical activity and has been approved for the treatment of multiple tumor types. Despite extensive research, predictive biomarkers for combination therapy remain poorly understood. Microvessel density (MVD), a surrogate marker for aberrant angiogenesis measured by immunohistochemistry (IHC), has been associated with response to monotherapy with anti-angiogenesis inhibitors.

View Article and Find Full Text PDF

Objective: A pathogenetic role of CD8+ T lymphocytes in radiographic axial spondyloarthritis (r-axSpA) and other spondyloarthritis (SpA) is sustained by genome-wide association studies (GWAS) and by the expansion of public T cell clonotypes in the target tissues. This study investigates the migration of CD8+ T cells, along with their phenotype and functions in patients with r-axSpA and psoriatic arthritis (PsA).

Methods: Peripheral blood CD8+ and CD4+ T cells were isolated from r-axSpA (n= 128), PsA (n= 60) and rheumatoid arthritis (RA, n= 74) patients and healthy donors (HD, n= 79).

View Article and Find Full Text PDF

Introduction: There is a need for a noninvasive, affordable, sensitive, and specific biomarker to diagnose early acute rejection, to negate the need for frequent biopsies. Dd-cfDNA is a powerful adjunct yet there is limited data on the ethnic differences in its values. There is anecdotal evidence that dd-cfDNA values at rejection may be higher in Black as compared to non-Black recipients.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of hematologic malignancies, achieving remarkable clinical success with FDA-approved therapies targeting CD19 and BCMA. However, the extension of these successes to solid tumors remains limited due to several intrinsic challenges, including antigen heterogeneity and immunosuppressive tumor microenvironments. In this review, we provide a comprehensive overview of recent advances in CAR T cell therapy aimed at overcoming these obstacles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!