Evidence for a functional ventricular parasympathetic innervation of the mammalian heart between and within taxa remains controversial. We have previously proposed that the presence of a functional parasympathetic innervation of the ventricle was indicative of heterothermy, and is essential for maintaining ventricular stability at low body temperature. However, it is possible that the presence of such an innervation is also representative of the primitive mammalian state. In this study, we aimed to determine whether a functional parasympathetic innervation of the ventricle, that is capable of actively reducing the force of contraction, is present across metatherian mammals. Using in vitro isolated cardiac preparations, we examined evidence for a functional ventricular parasympathetic innervation of the ventricle in two species of metatherian mammal, one heterotherm (Western pygmy possum; Cercatetus concinnus) and one homeotherm (Golden bandicoot; Isoodon auratus), from different families to complement existing data from a heterothermic dasyurid. Both C. concinnus and I. auratus had a potent biphasic response to transmural electrical stimulation in both atrial and ventricular preparations. Both the decrease and increase in the force of contraction in response to stimulation were almost entirely blocked by the cholinergic and adrenergic antagonists, atropine and propranolol, respectively. These observations provide clear evidence for a parasympathetic innervation of the ventricle that is capable of directly influencing the force of contraction across metatherian mammals with different thermoregulatory strategies. While this innervation may facilitate heterothermy, this suggests that the presence of such an innervation pattern is indicative of the primitive mammalian state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00360-016-1021-1 | DOI Listing |
Methods Protoc
December 2024
Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
Both the prevalence and mortality of liver cancers continue to rise. Early surgical interventions, including liver transplantation or resection, remain the only curative treatment. Nerves in the periphery influence tumor growth within visceral organs.
View Article and Find Full Text PDFUnlabelled: Neural crest cells (NCCs) are a multipotent embryonic cell population of ectodermal origin that extensively migrate during early development and contribute to the formation of multiple tissues. Cardiac NCCs play a critical role in heart development by orchestrating outflow tract septation, valve formation, aortic arch artery patterning, parasympathetic innervation, and maturation of the cardiac conduction system. Abnormal migration, proliferation, or differentiation of cardiac NCCs can lead to severe congenital cardiovascular malformations.
View Article and Find Full Text PDFJ Neurophysiol
December 2024
Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio.
Integration of autonomic and metabolic regulation, including hepatic function, is a critical role played by the brain's hypothalamic region. Specifically, the paraventricular nucleus of the hypothalamus (PVN) regulates autonomic functions related to metabolism, such as hepatic glucose production. Although insulin can act directly on hepatic tissue to inhibit hepatic glucose production, recent evidence implicates central actions of insulin within PVN also regulates glucose metabolism.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
December 2024
Oregon Health & Science University, Portland, Oregon, United States;
Airway hyperreactivity in asthma is mediated by airway nerves, including sensory nerves in airway epithelium and parasympathetic nerves innervating airway smooth muscle. Isolating the function of these two nerve populations in vivo, to distinguish how each is affected by inflammatory processes and contributes to hyperreactivity in asthma, has been challenging. In this study, we used optogenetic acti-vation of airway nerves in vivo to study parasympathetic contributions to airway hyperreactivity in two mouse models of asthma: 1) acute challenge with house dust mite antigen, and 2) chronic airway hy-pereosinophilia due to genetic IL-5 overexpression in airways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!