DNA minicircles clarify the specific role of DNA structure on retroviral integration.

Nucleic Acids Res

Institut Pasteur, Unité de Virologie Moléculaire et Vaccinologie, UMR 3569 IP-CNRS, Paris 75015, France

Published: September 2016

AI Article Synopsis

  • Chromatin plays a crucial role in how retroviruses, like HIV-1, integrate their genetic material into the host cell's genome, influenced by both histones and DNA structure.
  • The study introduces a method using DNA minicircles (MCs) to mimic specific DNA distortions, allowing researchers to focus on the effects of these changes on integration efficiency and site selection.
  • Results showed that integrating into MCs enhances HIV-1 integration and shows a preference for certain DNA structures, while also identifying unique properties for different retroviruses, helping to clarify the complex mechanisms behind retroviral integration.

Article Abstract

Chromatin regulates the selectivity of retroviral integration into the genome of infected cells. At the nucleosome level, both histones and DNA structure are involved in this regulation. We propose a strategy that allows to specifically study a single factor: the DNA distortion induced by the nucleosome. This strategy relies on mimicking this distortion using DNA minicircles (MCs) having a fixed rotational orientation of DNA curvature, coupled with atomic-resolution modeling. Contrasting MCs with linear DNA fragments having identical sequences enabled us to analyze the impact of DNA distortion on the efficiency and selectivity of integration. We observed a global enhancement of HIV-1 integration in MCs and an enrichment of integration sites in the outward-facing DNA major grooves. Both of these changes are favored by LEDGF/p75, revealing a new, histone-independent role of this integration cofactor. PFV integration is also enhanced in MCs, but is not associated with a periodic redistribution of integration sites, thus highlighting its distinct catalytic properties. MCs help to separate the roles of target DNA structure, histone modifications and integrase (IN) cofactors during retroviral integration and to reveal IN-specific regulation mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5027509PMC
http://dx.doi.org/10.1093/nar/gkw651DOI Listing

Publication Analysis

Top Keywords

dna structure
12
retroviral integration
12
dna
10
integration
9
dna minicircles
8
dna distortion
8
integration sites
8
mcs
5
minicircles clarify
4
clarify specific
4

Similar Publications

Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells.

View Article and Find Full Text PDF

Molecular beacon (MB) probes have been extensively used for nucleic acid analysis. However, MB probes fail to hybridize with folded DNA or RNA. Here, we demonstrate that MB probes equipped with extra sequences complementary to the analyte, named 'tail', can increase the signal-to-background ratio by ∼40-fold and hybridization rates by ∼800-fold compared to conventional MB probes.

View Article and Find Full Text PDF

Preclinical evaluation of the potential PARP-imaging probe [carbonyl-C]DPQ.

EJNMMI Radiopharm Chem

January 2025

Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.

Background: Poly (ADP-ribose) polymerase (PARP) enzymes are crucial for the repair of DNA single-strand breaks and have become key therapeutic targets in homologous recombination-deficient cancers, including prostate cancer. To enable non-invasive monitoring of PARP-1 expression, several PARP-1-targeting positron emission tomography (PET) tracers have been developed. Here, we aimed to preclinically investigate [carbonyl-C]DPQ as an alternative PARP-1 PET tracer as it features a strongly distinct chemotype compared to the frontrunners [F]FluorThanatrace and [F]PARPi.

View Article and Find Full Text PDF

Closed genomes of commercial inoculant rhizobia provide a blueprint for management of legume inoculation.

Appl Environ Microbiol

January 2025

Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.

Unlabelled: Rhizobia are soil bacteria capable of establishing symbiosis within legume root nodules, where they reduce atmospheric N into ammonia and supply it to the plant for growth. Australian soils often lack rhizobia compatible with introduced agricultural legumes, so inoculation with exotic strains has become a common practice for over 50 years. While extensive research has assessed the N-fixing capabilities of these inoculants, their genomics, taxonomy, and core and accessory gene phylogeny are poorly characterized.

View Article and Find Full Text PDF

Unraveling the Role of Ubiquitin-Conjugating Enzyme UBE2T in Tumorigenesis: A Comprehensive Review.

Cells

December 2024

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China.

Ubiquitin-conjugating enzyme E2 T (UBE2T) is a crucial E2 enzyme in the ubiquitin-proteasome system (UPS), playing a significant role in the ubiquitination of proteins and influencing a wide range of cellular processes, including proliferation, differentiation, apoptosis, invasion, and metabolism. Its overexpression has been implicated in various malignancies, such as lung adenocarcinoma, gastric cancer, pancreatic cancer, liver cancer, and ovarian cancer, where it correlates strongly with disease progression. UBE2T facilitates tumorigenesis and malignant behaviors by mediating essential functions such as DNA repair, apoptosis, cell cycle regulation, and the activation of oncogenic signaling pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!