Photoinitiated reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of 2-hydroxypropyl methacrylate is conducted in water at low temperature using thermoresponsive copolymers of 2-(2-methoxyethoxy) ethyl methacrylate and oligo(ethylene glycol) methacrylate (Mn = 475 g mol(-1) ) as the macro-RAFT agent. Kinetic studies confirm that quantitative monomer conversion is achieved within 15 min of visible-light irradiation (405 nm, 0.5 mW cm(-2) ), and good control is maintained during the polymerization. The polymerization can be temporally controlled by a simple "ON/OFF" switch of the light source. Finally, thermoresponsive diblock copolymer nano-objects with a diverse set of complex morphologies (spheres, worms, and vesicles) are prepared using this particular formulation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.201600299DOI Listing

Publication Analysis

Top Keywords

thermoresponsive diblock
8
diblock copolymer
8
copolymer nano-objects
8
low-temperature synthesis
4
thermoresponsive
4
synthesis thermoresponsive
4
nano-objects aqueous
4
aqueous photoinitiated
4
photoinitiated polymerization-induced
4
polymerization-induced self-assembly
4

Similar Publications

The development of stimuli-responsive drug delivery systems enables targeted delivery and environment-controlled drug release, thereby minimizing off-target effects and systemic toxicity. We prepared and studied tailor-made dual-responsive systems (thermo- and pH-) based on synthetic diblock copolymers consisting of a fully hydrophilic block of poly[-(1,3-dihydroxypropyl)methacrylamide] (poly(DHPMA)) and a thermoresponsive block of poly[-(2,2-dimethyl-1,3-dioxan-5-yl)methacrylamide] (poly(DHPMA-acetal)) as drug delivery and smart stimuli-responsive materials. The copolymers were designed for eventual medical application to be fully soluble in aqueous solutions at 25 °C.

View Article and Find Full Text PDF

This study outlines the microfluidic (MF) controlled self-assembly of polylactide (PLA)-based linear and graft copolymers. The PLA-based copolymers (PLA-Cs) were synthesized through a convenient one-pot/one-step ROP/RAFT technique. Three distinct vinyl monomers-triethylene glycol methacrylate (TEGMA), 2-hydroxypropyl methacrylate (HPMA), and -(2-hydroxypropyl) methacrylamide (HPMAA) were employed to prepare various copolymers: linear thermoresponsive polylactide--poly(triethylene glycol methacrylate) (PLA--PTEGMA), graft pseudothermoresponsive poly[-(2-hydroxypropyl)] methacrylate--polylactide (PHPMA--PLA), and graft amphiphilic poly[-(2-hydroxypropyl)] methacrylamide--polylactide (PHPMAA--PLA).

View Article and Find Full Text PDF

Association of Thermoresponsive Diblock Copolymer PDEGMA--PDIPAEMA in Aqueous Solutions: The Influence of Terminal Groups.

Polymers (Basel)

July 2024

Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague, Czech Republic.

Aqueous solutions of a thermoresponsive diblock copolymer poly(di-[ethylene glycol] methyl ether methacrylate)--poly(2-[diisopropylamino] ethyl methacrylate) (PDEGMA--PDIPAEMA) were studied by static, dynamic and electrophoretic light scattering, small-angle X-ray scattering and differential scanning calorimetry. Thermoresponsive behavior of PDEGMA--PDIPAEMA was investigated at two pH values, pH = 2, at which the terminal carboxylic group of the PDEGMA chain and the PDIPAEMA block are protonated, and pH = 7, where the carboxyl terminal group is ionized while the PDIPAEMA block is partially deprotonated and more hydrophobic. Both at pH = 2 and 7, PDEGMA--PDIPAEMA copolymer underwent extensive association (the size of the aggregates was between 100 and 300 nm), indicating strong interchain interactions.

View Article and Find Full Text PDF

Poloxamers, ABA triblock polymers composed of a poly(propylene oxide) (PPO) midblock (B) and poly(ethylene oxide) (PEO) endblocks (A), are widely studied for biomedical applications. Aqueous poloxamer 407 (P407; also referred to as F127) undergoes a solution-to-gel transition with increasing temperature, driven by the formation and ordering of micelles onto periodic lattices; however, the gel temperature and resulting modulus has limited tunability. Here, reverse P407 (RP407), a BAB polymer of the same composition and molar mass but the inverted architecture, is synthesized via anionic polymerization.

View Article and Find Full Text PDF

Injectable Thermo-Responsive Peptide Hydrogels and Its Enzyme Triggered Dynamic Self-Assembly.

Polymers (Basel)

April 2024

Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, China.

Endogenous stimuli-responsive injectable hydrogels hold significant promise for practical applications due to their spatio-temporal controllable drug delivery. Herein, we report a facile strategy to construct a series of in situ formation polypeptide hydrogels with thermal responsiveness and enzyme-triggered dynamic self-assembly. The thermo-responsive hydrogels are from the diblock random copolymer mPEG-b-P(Glu-co-Tyr).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!