Human carbonic anhydrase IX (hCA IX) expression in many cancers is associated with hypoxic tumors and poor patient outcome. Inhibitors of hCA IX have been used as anticancer agents with some entering Phase I clinical trials. hCA IX is transmembrane protein whose catalytic domain faces the extracellular tumor milieu, which is typically associated with an acidic microenvironment. Here, we show that the catalytic domain of hCA IX (hCA IX-c) exhibits the necessary biochemical and biophysical properties that allow for low pH stability and activity. Furthermore, the unfolding process of hCA IX-c appears to be reversible, and its catalytic efficiency is thought to be correlated directly with its stability between pH 3.0 and 8.0 but not above pH 8.0. To rationalize this, we determined the X-ray crystal structure of hCA IX-c to 1.6 Å resolution. Insights from this study suggest an understanding of hCA IX-c stability and activity in low-pH tumor microenvironments and may be applicable to determining pH-related effects on enzymes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5322481 | PMC |
http://dx.doi.org/10.1021/acs.biochem.6b00243 | DOI Listing |
J Phys Chem B
November 2024
Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India.
Glycans exhibit significant structural diversity due to the flexibility of glycosidic bonds linking their constituent monosaccharides and the formation of numerous hydrogen bonds. The present work searches a simulated ensemble of glycan chain conformations attached to the catalytic domain of N-glycosylated human carbonic anhydrase IX (HCA IX-c) to identify conformations pointed away or back-folded toward the protein surface guided by different amino acid residues. A series of classical molecular dynamics (MD) simulation studies for a total of 30 μs followed by accelerated MD simulations for a total of 2 μs have been performed using two different force fields to capture varying degrees of fluctuations of both glycan chain and HCA IX.
View Article and Find Full Text PDFACS Omega
September 2022
Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India.
Human carbonic anhydrases (HCAs) are responsible for the pH control and sensing in our body and constitute key components in the central pH paradigm connected to cancer therapeutics. However, little or no molecular level studies are available on the pH-dependent stability and functional dynamics of the known isozymes of HCA. The main objective of this Article is to report the first bench-marking study on the structure and dynamics of the two most efficient isozymes, HCA II and IX, at neutral pH using classical molecular dynamics (MD) and constant pH MD (CpHMD) simulations combined with umbrella sampling, transition path sampling, and Markov state models.
View Article and Find Full Text PDFBiochemistry
August 2016
Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610, United States.
Human carbonic anhydrase IX (hCA IX) expression in many cancers is associated with hypoxic tumors and poor patient outcome. Inhibitors of hCA IX have been used as anticancer agents with some entering Phase I clinical trials. hCA IX is transmembrane protein whose catalytic domain faces the extracellular tumor milieu, which is typically associated with an acidic microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!