ASPP2 Is a Novel Pan-Ras Nanocluster Scaffold.

PLoS One

Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520, Turku, Finland.

Published: July 2017

Ras-induced senescence mediated through ASPP2 represents a barrier to tumour formation. It is initiated by ASPP2's interaction with Ras at the plasma membrane, which stimulates the Raf/MEK/ERK signaling cascade. Ras to Raf signalling requires Ras to be organized in nanoscale signalling complexes, called nanocluster. We therefore wanted to investigate whether ASPP2 affects Ras nanoclustering. Here we show that ASPP2 increases the nanoscale clustering of all oncogenic Ras isoforms, H-ras, K-ras and N-ras. Structure-function analysis with ASPP2 truncation mutants suggests that the nanocluster scaffolding activity of ASPP2 converges on its α-helical domain. While ASPP2 increased effector recruitment and stimulated ERK and AKT phosphorylation, it did not increase colony formation of RasG12V transformed NIH/3T3 cells. By contrast, ASPP2 was able to suppress the transformation enhancing ability of the nanocluster scaffold Gal-1, by competing with the specific effect of Gal-1 on H-rasG12V- and K-rasG12V-nanoclustering, thus imposing ASPP2's ERK and AKT signalling signature. Similarly, ASPP2 robustly induced senescence and strongly abrogated mammosphere formation irrespective of whether it was expressed alone or together with Gal-1, which by itself showed the opposite effect in Ras wt or H-ras mutant breast cancer cells. Our results suggest that Gal-1 and ASPP2 functionally compete in nanocluster for active Ras on the plasma membrane. ASPP2 dominates the biological outcome, thus switching from a Gal-1 supported growth-promoting setting to a senescence inducing and stemness suppressive program in cancer cells. Our results support Ras nanocluster as major integrators of tumour fate decision events.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4954646PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159677PLOS

Publication Analysis

Top Keywords

aspp2
11
nanocluster scaffold
8
ras
8
ras plasma
8
plasma membrane
8
erk akt
8
cancer cells
8
nanocluster
6
gal-1
5
aspp2 novel
4

Similar Publications

Cardiocutaneous syndrome is caused by aggregation of iASPP mutants.

Cell Death Discov

December 2024

Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.

The ASPP (apoptosis-stimulating protein of p53) family of proteins is involved in many cellular interactions and is starting to emerge as a major scaffolding hub for numerous proteins involved in cancer biology, inflammation and cellular integrity. It consists of the three members ASPP1, ASPP2 and iASPP which are best known for modulating the apoptotic function of p53, thereby directing cell fate decision. Germline mutations in iASPP have been shown to cause cardiocutaneous syndromes, a combination of heart and skin defects usually leading to death before the age of five.

View Article and Find Full Text PDF

As a member of the p53-binding protein family, apoptosis-stimulating protein p53 2 (ASPP2) is closely related to autophagy and apoptosis. However, the mechanistic role of ASPP2 in the development of metabolic dysfunction-associated steatohepatitis (MASH) remains elusive. Therefore, we investigated the role and underlying mechanisms of ASPP2 in MASH progression in a mouse model of MASH and a cellular model of metabolic dysfunction-associated fatty liver disease.

View Article and Find Full Text PDF

ASPP2 deficiency attenuates lipid accumulation through the PPARγ pathway in alcoholic liver injury.

Cell Biol Toxicol

November 2024

Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China.

The initial stage of alcoholic liver disease (ALD) is hepatic steatosis. Recent studies have highlighted a possible role for Apoptosis-stimulating protein 2 of p53 (ASPP2) in regulating hepatic lipid metabolism in nonalcoholic fatty liver (NAFLD). However, whether ASPP2 regulates alcohol-induced lipid accumulation and its mechanisms remain unclear.

View Article and Find Full Text PDF

Purpose: Proliferative vitreoretinopathy (PVR) can cause blindness and the pathogenesis is unclear. Transforming growth factor (TGF)-β-induced epithelial-mesenchymal transition (EMT) of RPE cells is vital. P53 protein 2 (ASPP2) was previously reported to inhibit EMT in PVR rats, but the specific mechanism is unveiled.

View Article and Find Full Text PDF

Background: Acute liver injury (ALI), which is a type of inflammation-mediated hepatocellular injury, is a clinical syndrome that results from hepatocellular apoptosis and hemorrhagic necrosis. Apoptosis stimulating protein of p53-2 (ASPP2) is a proapoptotic member of the p53 binding protein family. However, the role of ASPP2 in the pathogenesis of ALI and its regulatory mechanisms remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!