A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Statistical Health Monitoring Applied to a Metabolomic Study of Experimental Hepatocarcinogenesis: An Alternative Approach to Supervised Methods for the Identification of False Positives. | LitMetric

AI Article Synopsis

  • * The proposed statistical process control (SPC) method is effective for monitoring treatment responses and identifying early individual metabolic changes, demonstrated through studies on liver cancer models using NMR spectroscopy and multivariate analysis.
  • * This SPC approach successfully distinguished between responders and nonresponders, identified specific out-of-control metabolites, and has potential applications in personalized diagnosis and understanding individual pathological processes.

Article Abstract

In a typical metabolomics experiment, two or more conditions (e.g., treated versus untreated) are compared, in order to investigate the potential differences in the metabolic profiles. When dealing with complex biological systems, a two-class classification is often unsuitable, since it does not consider the unpredictable differences between samples (e.g., nonresponder to treatment). An approach based on statistical process control (SPC), which is able to monitor the response to a treatment or the development of a pathological condition, is proposed here. Such an approach has been applied to an experimental hepatocarcinogenesis model to discover early individual metabolic variations associated with a different response to the treatment. Liver study was performed by nuclear magnetic resonance (NMR) spectroscopy, followed by multivariate statistical analysis. By this approach, we were able to (1) identify which treated samples have a significantly different metabolic profile, compared to the control (in fact, as confirmed by immunohistochemistry, the method correctly classified 7 responders and 3 nonresponders among the 10 treated animals); (2) recognize, for each individual sample, the metabolites that are out of control (e.g., glutathione, acetate, betaine, and phosphocholine). The first point could be used for classification purposes, and the second point could be used for a better understanding of the mechanisms underlying the early phase of carcinogenesis. The statistical control approach can be used for diagnosis (e.g., healthy versus pathological, responder versus nonresponder) and for generation of an individual metabolic profile, leading to a better understanding of the individual pathological processes and to a personalized diagnosis and therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.5b03078DOI Listing

Publication Analysis

Top Keywords

experimental hepatocarcinogenesis
8
response treatment
8
individual metabolic
8
metabolic profile
8
better understanding
8
approach
5
statistical
4
statistical health
4
health monitoring
4
monitoring applied
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: