AI Article Synopsis

  • Research shows that the size of gene families related to detoxifying toxins in insects can relate to their diet complexity and likelihood of developing resistance to insecticides.
  • A study analyzed cytochrome P450, carboxyl/cholinesterase, and glutathione S-transferase genes in 65 insect species, revealing a 2-4 fold variation in gene numbers.
  • There’s a strong link between gene numbers and feeding preferences in some insect groups like Hymenoptera, but not in others like Lepidoptera; larger gene families also tend to be associated with species that have a higher chance of insecticide resistance.

Article Abstract

The size of gene families associated with xenobiotic detoxification in insects may be associated with the complexity of their diets and their propensities to develop insecticide resistance. We test these hypotheses by collating the annotations of cytochrome P450, carboxyl/cholinesterase and glutathione S-transferase genes in 65 insect species with data on their host use and history of insecticide resistance. We find 2-4 fold variation across the species in the numbers of these genes and, in some orders, especially the Hymenoptera, there is a clear relationship between the numbers of genes and feeding preferences. However in other orders, in particular the Lepidoptera, no such relationship is apparent. The size of these three gene families also tend to correlate with insecticide resistance propensity but this may not be an independent effect because species with broader host ranges are more likely to be pests that are heavily sprayed with insecticides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cois.2015.12.001DOI Listing

Publication Analysis

Top Keywords

insecticide resistance
16
feeding preferences
8
gene families
8
numbers genes
8
insecticide
4
preferences insecticide
4
resistance
4
resistance associated
4
associated size
4
size detoxifying
4

Similar Publications

Squeeze pumping of lipids and insecticides by ABCH transporter.

Cell

December 2024

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:

ATP-binding cassette (ABC) transporter subfamily H is only identified in arthropods and zebrafish. It transports lipids and is related to insecticide resistance. However, the precise mechanisms of its functions remain elusive.

View Article and Find Full Text PDF

Introduction: is an important economic pest affecting Caprifoliaceae and Apiaceae plants, and chemical control is still the main effective control method in the field. Afidopyropen is a new type of pyridine cyclopropyl insecticide, which can effectively control piercing-sucking mouthparts pests and is suitable for pest resistance management. However, the detoxification mechanism of .

View Article and Find Full Text PDF

Background: Spatial repellent products are used for prevention of insect bites, and a body of evidence exists on spatial repellent entomological efficacy. A new option for vector control, spatial repellent products are designed to release active ingredient into the air for disruption of human-vector contact thereby reducing human exposure to mosquito-borne pathogens. Clinical trials have shown spatial repellent epidemiological efficacy against Aedes-borne viruses but inconclusive outcomes against malaria.

View Article and Find Full Text PDF

Background: Effective vector control interventions, notably insecticide-treated nets (ITNs) and indoor residual spraying (IRS) are indispensable for malaria control in Tanzania and elsewhere. However, the emergence of widespread insecticide resistance threatens the efficacy of these interventions. Monitoring of insecticide resistance is, therefore, critical for the selection and assessment of the programmatic impact of insecticide-based interventions.

View Article and Find Full Text PDF

Roles of spermary-specific carboxylesterases in Nilaparvata lugens reproduction: Opposite between insecticide-induced upregulation and resistance-associated overexpression.

Int J Biol Macromol

December 2024

Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China. Electronic address:

Seminal fluid proteins (SFPs) in insect males are critical for reproduction, being transported into female ovary. In Nilaparvata lugens, a significant rice pest, seven spermary-specific carboxylesterases (CarEs) were found abundantly in SFPs, with over-expression in males of an imidacloprid-resistant (RES) strain compared to a susceptible (SUS) strain. This study aimed to evaluate roles of spermary-specific CarEs in N.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!