Simultaneous achievement of prolonged retention in blood circulation and efficient gene transfection activity in target tissues has always been a major challenge hindering in vivo applications of nonviral gene vectors via systemic administration. The engineered strategies for efficient systemic gene delivery are under wide investigation. These approaches include the thermo-responsive formation of a hydrophobic intermediate layer on PEG-shielded polyplex micelles. Herein, we constructed novel rod-shaped ternary polyplex micelles (TPMs) via complexation between the mixed block copolymers of poly(ethylene glycol)-b-poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (PEG-b-PAsp(DET)) and poly(N-isopropylacrylamide)-b-PAsp(DET) (PNIPAM-b-PAsp(DET)) and plasmid DNA (pDNA) at room temperature (RT), exhibiting distinct temperature-responsive formation of a hydrophobic intermediate layer between PEG shells and pDNA cores through facile temperature increase from RT to body temperature (~37 °C).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-3718-9_17 | DOI Listing |
Polymers (Basel)
November 2024
Institute of Polymers, Bulgarian Academy of Sciences, "Akad. G. Bonchev" St., Bl. 103-A, 1113 Sofia, Bulgaria.
We introduce a novel concept in nucleic acid delivery based on the use of mixed polymeric micelles (MPMs) as platforms for the preparation of micelleplexes with DNA. MPMs were prepared by the co-assembly of a cationic copolymer, poly(1-(4-methylpiperazin-1-yl)-propenone)-b-poly(d,l-lactide), and nonionic poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) block copolymers. We hypothesize that by introducing nonionic entities incorporated into the mixed co-assembled structures, the mode and strength of DNA binding and DNA accessibility and release could be modulated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2024
College of Pharmacy, Dalian Medical University, Dalian 116044, China.
Polyplexes are required to be equipped with multiple functionalities to accomplish adequate structure stability and gene transfection efficacy for gene therapy. Herein, a 4-carboxy-3-fluorophenylboronic acid (FPBA)-functionalized block copolymer of PEG--PAsp(DET/FBA) and PAsp(DET/FBA) (abbreviated as PB and HB) was synthesized and applied for engineering functional polyplex micelles (PMs) through ionic complexation with pDNA followed by strategic cross-linking with nordihydroguaiaretic acid (NDGA) in respect to the potential linkage of polyphenol and FPBA moieties. In relation to polyplex micelles void of cross-linking, the engineered multifunctional polyplex micelles (PBHBN-PMs) were determined to possess improved structural tolerability against the exchange reaction with charged species.
View Article and Find Full Text PDFAdv Drug Deliv Rev
August 2024
Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland; NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland. Electronic address:
One of the key aspects of coping efficiently with complex pathological conditions is delivering the desired therapeutic compounds with precision in both space and time. Therefore, the focus on nuclear-targeted delivery systems has emerged as a promising strategy with high potential, particularly in gene therapy and cancer treatment. Here, we explore the design of supramolecular nanoassemblies as vehicles to deliver specific compounds to the nucleus, with the special focus on polymer and peptide-based carriers that expose nuclear localization signals.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2024
Department of Pharmacy, Pharmaceutical Biotechnology, Ludwig-Maximilians-Universität Munich, 81377 Munich, Germany.
Carriers for RNA delivery must be dynamic, first stabilizing and protecting therapeutic RNA during delivery to the target tissue and across cellular membrane barriers and then releasing the cargo in bioactive form. The chemical space of carriers ranges from small cationic lipids applied in lipoplexes and lipid nanoparticles, over medium-sized sequence-defined xenopeptides, to macromolecular polycations applied in polyplexes and polymer micelles. This perspective highlights the discovery of distinct virus-inspired dynamic processes that capitalize on mutual nanoparticle-host interactions to achieve potent RNA delivery.
View Article and Find Full Text PDFActa Pharm Sin B
February 2024
School of Medical Technology, Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China.
Small interfering RNA (siRNA) has a promising future in the treatment of ocular diseases due to its high efficiency, specificity, and low toxicity in inhibiting the expression of target genes and proteins. However, due to the unique anatomical structure of the eye and various barriers, delivering nucleic acids to the retina remains a significant challenge. In this study, we rationally design PACD, an A-B-C type non-viral vector copolymer composed of a hydrophilic PEG block (A), a siRNA binding block (B) and a pH-responsive block (C).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!