Background: Previous quantitative trait loci (QTLs) studies using the Avalon × Cadenza doubled haploid (DH) population identified eleven QTLs determining plant height, heading date and grain yield. The objectives of this study were: (i) to provide insight into the effects of these QTLs using reciprocal multiple near isogenic lines (NILs) with each pair of alleles compared in both parental backgrounds (Avalon or Cadenza), (ii) quantifying epistasis by looking at the background effects and (iii) predict favourable allelic combinations to develop superior genotypes adapted to a target environment.
Results: To this aim, a library of 553 BC2 NILs and their recurrent parents were tested over two growing seasons (2012/2013 and 2013/2014). The results obtained in the present study validated the plant height, heading date and grain yield QTLs previously identified. Epistatic interactions were detected for the 6B QTL for plant height and heading date, 3A QTL for heading date and grain yield and 2A QTL for grain yield.
Conclusion: The marker assisted backcrossing strategy used provided an efficient method of resolving QTL for key agronomic traits in wheat as Mendelian factors determining possible epistatic interactions. The study shows that these QTLs are amenable to marker assisted selection, fine mapping, future positional cloning, and physiological trait dissection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4952066 | PMC |
http://dx.doi.org/10.1186/s12870-016-0849-6 | DOI Listing |
Breed Sci
September 2024
Crop Research Laboratories, Sapporo Breweries Ltd., 37-1 Nittakizaki, Ota, Gunma 370-0321, Japan.
Hokkaido-specific malting barley varieties have been developed to improve the grain yield, disease resistance, malting quality, and brewing quality. In this report we describe the breeding and evaluation of brewing quality of a hulled two-row malting barley ( L.) variety 'Satuiku 5 go' lacking lipoxygenase-1 (LOX-1-less).
View Article and Find Full Text PDFFront Plant Sci
January 2025
Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.
Introduction: Huruan1212 (HR1212) is well-regarded for its superior eating and cooking quality in the lower reaches of the Yangtze River in China. Still, its high susceptibility to rice panicle blast and lack of fragrance have limited its further spread and utilization. and are two dominant genes known for their stable broad-spectrum resistance against rice blast fungus , while is the crucial gene that regulates rice aroma.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, People's Republic of China.
Conservation agriculture, which involves minimal soil disturbance, permanent soil cover, and crop rotation, has been widely adopted as a sustainable agricultural practice globally. However, the effects of conservation agriculture practices on soil NO emissions and crop yield vary based on geography, management methods, and the duration of implementation, which has hindered its widespread scientific application. In this study, we assessed the impacts of no-tillage (NT), both individually and in combination with other conservation agriculture principles, on soil NO emissions and crop yields worldwide, based on 1270 observations from 86 peer-reviewed articles.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Maize Research Institute, Qingdao Agricultural University, Qingdao, 266109, China.
Background: The development of superior summer maize hybrids with high-yield potential and essential agronomic traits, such as resistance to lodging, is crucial for ensuring the sustainability of maize cultivation. However, the task of identifying and breeding genotypes that exhibit exceptional performance and stability across multiple environment conditions, while considering a wide range of traits, is challenging. Given the backdrop of global climate change, understanding which climate variables and soil properties most significantly impact environmental similarity is essential for selecting hybrids with improved adaptability to regions with diverse climatic and soil conditions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China.
Thermoelectric (TE) performance in materials is often constrained by the strong coupling between carrier and phonon transport, necessitating trade-offs between electrical and thermal properties that limit improvements in the figure of merit (). Herein, a novel strategy is proposed to achieve simultaneous energy filtering and enhanced phonon scattering, effectively optimizing the TE properties of CoSb-based skutterudites. By introducing CuTe nanoprecipitates into the YbCoSb matrix, interfacial barriers are formed, which selectively filter low-energy charge carriers, significantly improving the Seebeck coefficient while maintaining high carrier mobility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!