Cerebral air embolism is a dreaded complication of invasive medical procedures. The mainstay of therapy for patients with cerebral air embolism has been hyperbaric oxygen therapy, high flow oxygen therapy, and anticonvulsants. We present a novel therapeutic approach for treatment of cerebral air embolism causing large vessel occlusion, using endovascular aspiration. Our patient developed a cerebral air embolism following sclerotherapy for varicose veins. This caused near total occlusion of the superior division of the M2 segment of the right middle cerebral artery. Symptoms included unilateral paralysis, unintelligible speech, and hemianopia; National Institutes of Health Stroke Scale (NIHSS) on presentation was 16. The air embolism was treated using a distal aspiration technique. Angiography following aspiration showed Thrombolysis in Cerebral Infarction 2B reperfusion. Following aspiration, the patient was re-examined; NIHSS at that time was 4. At 1 month follow-up, the modified Rankin Scale score was 1 and NIHSS was 1. Treatment of cerebral air embolism is discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964109PMC
http://dx.doi.org/10.1136/bcr-2016-012535DOI Listing

Publication Analysis

Top Keywords

air embolism
28
cerebral air
24
embolism causing
8
causing large
8
large vessel
8
vessel occlusion
8
endovascular aspiration
8
oxygen therapy
8
treatment cerebral
8
aspiration patient
8

Similar Publications

Carbon dioxide gas emboli is a potentially fatal complication that occurs more frequently during laparoscopic hepatectomy compared to other laparoscopic surgeries. The patient featured in this report had massive gas embolism confirmed by intraoperative transesophageal echocardiography (TEE) that were associated with episodes of severe hypoxemia, hemodynamic instability, and right ventricular failure requiring conversion to open hepatectomy. Abrupt abdominal decompression resulted in massive hemorrhage from a previously undetected defect in the middle hepatic vein.

View Article and Find Full Text PDF

Dynamic EIT technology for real-time non-invasive monitoring of acute pulmonary embolism: a porcine model experiment.

Respir Res

January 2025

Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Department of Biomedical Engineering, Air Force Medical University, Xi'an, 710032, China.

Background: Acute pulmonary embolism represents the third most prevalent cardiovascular pathology, following coronary heart disease and hypertension. Its untreated mortality rate is as high as 20-30%, which represents a significant threat to patient survival. In view of the current lack of real-time monitoring techniques for acute pulmonary embolism, this study primarily investigates the potential of the pulsatility electrical impedance tomography (EIT) technique for the detection and real-time monitoring of acute pulmonary embolism through the collection and imaging of the pulsatile signal of pulmonary blood flow.

View Article and Find Full Text PDF

Background: Petroclival meningiomas are still a neurosurgical challenge due to their proximity to cranial nerves and cerebral vasculature along the surgical corridor. The usual extension of large petroclival meningiomas is along the posterior fossa, frequently compromising and displacing adjunct cranial nerves such as the sixth and seventh-eight cranial nerve complex with brainstem compression, causing progressive neurological deficit and severe headache. The goal of sizeable petroclival meningioma surgery treatment is a maximal resection with preservation of neurological function.

View Article and Find Full Text PDF

In coronary artery bypass grafting (CABG) on pump, achieving optimal visualization is critical for surgical precision and safety. The use of blowers to clear the CABG anastomosis poses risks, including the formation of micro-embolic gas bubbles, which can be insidious and increase the risk of cerebral or myocardial complications. This retrospective study compares the effectiveness of the use of irrigation mist and CO versus a direct CO blower without irrigation in terms of visualization, postoperative fibrillation, and micro-embolic gas activity.

View Article and Find Full Text PDF

Revised method for constructing acoustic vulnerability curves in trees.

Tree Physiol

January 2025

Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.

During drought, the formation of air bubbles known as embolisms in the water-conducting xylem reduces hydraulic conductivity, which can ultimately result in tree death. Accurately quantifying vulnerability to embolism formation is therefore essential for understanding tree hydraulics. Acoustic emission (AE) analysis offers a non-destructive method to monitor this process, yet the interpretation of captured signals remains debated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!