Objective: To prepare a novel strontium-containing calcium sulfate and assess its and biocompatibility.
Methods: A novel strontium-containing α-calcium sulfate hemihydrate (Sr-caS) bone substitute as prepared with hydrothermal reaction and examined for X-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric differential scanning calorimetric (TG-DSC) patterns. The biocompatibility of the material was evaluated by in vitro cytotoxicity test in L-929 cells, hemolysis test of blood, and in vivo implantation test in SD rats.
Results: The XRD spectra of the prepared Sr-CaS powder highlighted 3 strong characteristic peaks of α-CaSO4 at 14.63°, 25.72° and 29.80° with a strontium-specific peak at 24.78°. The FTIR patterns of Sr-CaS resembled those of CaS. TG-DSC results showed that the material contained a non-evaporable water content of 6.03%. In vitro cytotoxicity test in L-929 cells suggested that the material had a class 1 cytotoxicity, and the hemolysis rate of its aqueous extract was 4.3%. The material implanted in the muscular tissues of SD rats maintained a steady state in the surrounding tissues.
Conclusion: This strontium-containing calcium sulfate material we prepared shows an excellent biocompatibility for potential use as a novel artificial bone material.
Download full-text PDF |
Source |
---|
Spectrochim Acta A Mol Biomol Spectrosc
September 2024
AGH University of Krakow, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Kraków.
Iron-phosphate glasses are a wide group of materials with a wide range of applications. Among others, they are promising materials in toxic waste vitrification because of their high chemical durability and relatively low processing temperature and time. They are a novel group of glasses that are considered in the vitrification of radioactive waste, especially those that cannot be treated using conventional borosilicate ones.
View Article and Find Full Text PDFJ Funct Biomater
November 2022
Department of Chemistry, Ribeirão Preto Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil.
Strontium acetate is applied for dental hypersensitivity treatment; however, the use of strontium carbonates for this purpose has not been described. The use of Sr-carbonate nanoparticles takes advantage of both the benefits of strontium on dentin mineralization and the abrasive properties of carbonates. Here in, we aimed to synthesize strontium carbonate and strontium-substituted calcium carbonate nanoparticles and test them as potential compounds in active dentifrices for treating dental hypersensitivity.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
October 2022
School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China; Artificial Organs and Materials Engineering Research Center, Ministry of Education, Guangzhou 510632, People's Republic of China. Electronic address:
Strontium carbonate (SrC) bioceramics are proposed as potential biomaterials to efficaciously repair the bone defects. However, the development of SrC bioceramics is restricted by their intrinsic low mechanical strength. In this study, SrC-based composite bioceramics (SrC-SrP) were fabricated by incorporating strontium-containing phosphate glass (SrP).
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
July 2021
Hubei Tumor Biological Behavior Key Laboratory, Center of stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China. Electronic address:
In recent years, photocrosslinked alginate hydrogel has been widely studied in bone tissue engineering, owing to its numerous advantages. However, there are still some shortcomings like insufficient mechanical strength and lack of bone induction. To compensate for these deficiencies, in this work, a novel doped strontium (Sr) photocrosslinked methacrylated alginate (Sr-PMA) hydrogel was developed.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
May 2021
Biomaterials Research and Test Center, Shanghai Ninth People's Hospital, Shanghai JiaoTong University, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China. Electronic address:
Reconstruction of bone defects is still a challenge. In this study, we developed and systematically evaluated a novel injectable strontium-containing hydroxyapatite (Sr-HA) bone cement in which Sr-HA powder included 5% Sr and was mixed with a setting liquid that included 5% potassium citrate. This Sr-HA cement was mainly composed of HA and α-tricalcium phosphate (TCP) and exhibited favorable injectability (100%), setting times (the initial setting time was 240 s and the final setting time was 420 s), compressive strength (73.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!