Unlabelled: Salmonella enterica serovar Typhimurium can cross the epithelial barrier using either the invasion-associated type III secretion system (T3SS-1) or a T3SS-1-independent mechanism that remains poorly characterized. Here we show that flagellum-mediated motility supported a T3SS-1-independent pathway for entering ileal Peyer's patches in the mouse model. Flagellum-dependent invasion of Peyer's patches required energy taxis toward nitrate, which was mediated by the methyl-accepting chemotaxis protein (MCP) Tsr. Generation of nitrate in the intestinal lumen required inducible nitric oxide synthase (iNOS), which was synthesized constitutively in the mucosa of the terminal ileum but not in the jejunum, duodenum, or cecum. Tsr-mediated invasion of ileal Peyer's patches was abrogated in mice deficient for Nos2, the gene encoding iNOS. We conclude that Tsr-mediated energy taxis enables S Typhimurium to migrate toward the intestinal epithelium by sensing host-derived nitrate, thereby contributing to invasion of Peyer's patches.
Importance: Nontyphoidal Salmonella serovars, such as S. enterica serovar Typhimurium, are a common cause of gastroenteritis in immunocompetent individuals but can also cause bacteremia in immunocompromised individuals. While the invasion-associated type III secretion system (T3SS-1) is important for entry, S Typhimurium strains lacking a functional T3SS-1 can still cross the intestinal epithelium and cause a disseminated lethal infection in mice. Here we observed that flagellum-mediated motility and chemotaxis contributed to a T3SS-1-independent pathway for invasion and systemic dissemination to the spleen. This pathway required the methyl-accepting chemotaxis protein (MCP) Tsr and energy taxis toward host-derived nitrate, which we found to be generated by inducible nitric oxide synthase (iNOS) in the ileal mucosa prior to infection. Collectively, our data suggest that S Typhimurium enhances invasion by actively migrating toward the intestinal epithelium along a gradient of host-derived nitrate emanating from the mucosal surface of the ileum.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4958259 | PMC |
http://dx.doi.org/10.1128/mBio.00960-16 | DOI Listing |
Heliyon
January 2025
Swansea University, Swansea, Wales, SA2 8PP, UK.
Urban Air Transportation (UAT) encompasses private aircraft, air taxis, and specialized missions. These missions include aerial sightseeing, logistics transportation, emergency response, and anti-terrorism operations. They impose stringent requirements on advanced air mobility (AAM) aircraft.
View Article and Find Full Text PDFBiol Lett
November 2024
Centre for Ecology & Conservation, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK.
Microbiol Res
January 2025
International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China. Electronic address:
Chemotaxis, the directed movement of microbes in response to chemical gradients, plays a crucial role in the biodegradation of xenobiotics, such as pesticides, industrial chemicals, and pharmaceuticals, which pose significant environmental and health risks. Emerging trends in genomics, proteomics, and synthetic biology have advanced our understanding and control of these processes, thereby enabling the development of engineered microorganisms with tailored chemotactic responses and degradation capabilities. This process plays an essential physiological role in processes, such as surface sensing, biofilm formation, quorum detection, pathogenicity, colonization, symbiotic interactions with the host system, and plant growth promotion.
View Article and Find Full Text PDFBMC Bioinformatics
October 2024
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
Background: E. coli chemotactic motion in the presence of a chemonutrient field can be studied using wet laboratory experiments or macroscale-level partial differential equations (PDEs) (among others). Bridging experimental measurements and chemotactic Partial Differential Equations requires knowledge of the evolution of all underlying fields, initial and boundary conditions, and often necessitates strong assumptions.
View Article and Find Full Text PDFNat Commun
October 2024
IBM T. J. Watson Research Center, Yorktown Heights, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!