Smoking initiation predominantly occurs during adolescence, often in the presence of peers. Therefore, understanding the neural mechanisms underlying the rewarding effects of nicotine and social stimuli is vital. Using the conditioned place preference (CPP) procedure, we measured immediate early gene (IEG) expression in animals following exposure either to a reward-conditioned environment or to the unconditioned stimuli (US). Adolescent, male rats were assigned to the following CPP US conditions: (1) Saline+Isolated, (2) Nicotine+Isolated, (3) Saline+Social, or (4) Nicotine+Social. For Experiment 1, brain tissue was collected 90min following the CPP expression test and processed for Fos immunohistochemistry. We found that rats conditioned with nicotine with or without a social partner exhibited CPP; however, we found no group differences in Fos expression in any brain region analyzed, with the exception of the nucleus accumbens core that exhibited a social-induced attenuation in Fos expression. For Experiment 2, brain tissue was collected 90min following US exposure during the last conditioning session. We found social reward-induced increases in IEG expression in striatal and amydalar subregions. In contrast, nicotine reduced IEG expression in prefrontal and striatal subregions. Reward interactions were also found in the dorsolateral striatum, basolateral amygdala, and ventral tegmental area where nicotine alone attenuated IEG expression and social reward reversed this effect. These results suggest that in general social rewards enhance, whereas nicotine attenuates, activation of mesocorticolimbic regions; however, the rewards given together interact to enhance activation in some regions. The findings contribute to knowledge of how a social environment influences nicotine effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4991312PMC
http://dx.doi.org/10.1016/j.bbr.2016.07.024DOI Listing

Publication Analysis

Top Keywords

ieg expression
16
early gene
8
expression
8
adolescent male
8
male rats
8
nicotine social
8
experiment brain
8
brain tissue
8
tissue collected
8
collected 90min
8

Similar Publications

Transcriptional determinants of goal-directed learning and representational drift in the parahippocampal cortex.

Cell Rep

January 2025

Department of Biology, Boston University, Boston, MA 02215, USA; Center for Neurophotonics, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Center for Systems Neuroscience, Boston University, Boston MA 02215, USA. Electronic address:

Task learning involves learning associations between stimuli and outcomes and storing these relationships in memory. While this information can be reliably decoded from population activity, individual neurons encoding this representation can drift over time. The circuit or molecular mechanisms underlying this drift and its role in learning are unclear.

View Article and Find Full Text PDF

Soil salinity is considered a serious problem that limits agricultural productivity. Currently, solutions are being sought to mitigate the negative impact of salt on economically important crops. The aim of the study was to evaluate the effect of foliar application of silicon (Si) on the physiological and epigenetic responses of wheat grown under salt stress conditions.

View Article and Find Full Text PDF

Dominance hierarchies are key to social organization in group-living species, requiring individuals to recognize their own and others' ranks. This is particularly complex for intermediate-ranking animals, who navigate interactions with higher- and lower-ranking individuals. Using in situ hybridization, we examined how the brains of intermediate-ranked mice in hierarchies respond to dominant and subordinate stimuli by labeling activity-induced immediate early genes and neuronal markers.

View Article and Find Full Text PDF

Molecular and genetic techniques now allow selective tagging and manipulation of the population of neurons, often referred to as "engram cells," that were active during a specific experience. One common approach to labeling these cells is to use the transgenic mouse (TetTag). In addition to tagging cells active during learning, it is common to examine the reactivation of these cells using immediate early gene (IEG) expression as an index of neural activity.

View Article and Find Full Text PDF

The hippocampus (HPC) is essential for navigation and memory, tracking environmental continuity and change, including navigation relative to moving targets. CA1 ensembles expressing immediate-early gene (IEG) Arc and Homer1a RNA are contextually specific. While IEG expression correlates with HPC-dependent task demands, the effects of behavioral demands on IEG-expressing ensembles remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!