New Morphine Analogs Produce Peripheral Antinociception within a Certain Dose Range of Their Systemic Administration.

J Pharmacol Exp Ther

Departments of Pharmacology and Pharmacotherapy (E.L., P.R., Z.G., L.C., M.B., K.K., Z.S.Z., P.F., S.F., M.A.) and Pharmaceutical Chemistry (A.V., S.H.), Faculty of Medicine, Semmelweis University, Budapest, Hungary; Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany (S.A.M., M.S.); Department of Pharmacology and Pharmacotherapy, Medical School, Szentágothai Research Centre (K.C., Z.H.), and MTA-PTE NAP B Chronic Pain Research Group, Faculty of Medicine (Z.H.), University of Pécs, Pécs, Hungary

Published: October 2016

Growing data support peripheral opioid antinociceptive effects, particularly in inflammatory pain models. Here, we examined the antinociceptive effects of subcutaneously administered, recently synthesized 14-O-methylmorphine-6-O-sulfate (14-O-MeM6SU) compared with morphine-6-O-sulfate (M6SU) in a rat model of inflammatory pain induced by an injection of complete Freund's adjuvant and in a mouse model of visceral pain evoked by acetic acid. Subcutaneous doses of 14-O-MeM6SU and M6SU up to 126 and 547 nmol/kg, respectively, produced significant and subcutaneous or intraplantar naloxone methiodide (NAL-M)-reversible antinociception in inflamed paws compared with noninflamed paws. Neither of these doses significantly affected thiobutabarbital-induced sleeping time or rat pulmonary parameters. However, the antinociceptive effects of higher doses were only partially reversed by NAL-M, indicating contribution of the central nervous system. In the mouse writhing test, 14-O-MeM6SU was more potent than M6SU after subcutaneous or intracerebroventricular injections. Both displayed high subcutaneous/intracerebroventricular ED50 ratios. The antinociceptive effects of subcutaneous 14-O-MeM6SU and M6SU up to 136 and 3043 nmol/kg, respectively, were fully antagonized by subcutaneous NAL-M. In addition, the test compounds inhibited mouse gastrointestinal transit in antinociceptive doses. Taken together, these findings suggest that systemic administration of the novel compound 14-O-MeM6SU similar to M6SU in specific dose ranges shows peripheral antinociception in rat and mouse inflammatory pain models without central adverse effects. These findings apply to male animals and must be confirmed in female animals. Therefore, titration of systemic doses of opioid compounds with limited access to the brain might offer peripheral antinociception of clinical importance.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.116.233551DOI Listing

Publication Analysis

Top Keywords

antinociceptive effects
16
peripheral antinociception
12
inflammatory pain
12
14-o-mem6su m6su
12
systemic administration
8
pain models
8
antinociceptive
5
effects
5
14-o-mem6su
5
m6su
5

Similar Publications

Decreased opioid receptor availability and impaired neurometabolic coupling as signatures of morphine tolerance in male rats: A positron emission tomography study.

Biomed Pharmacother

January 2025

Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France. Electronic address:

Translational neuroimaging techniques are needed to address the impact of opioid tolerance on brain function and quantitatively monitor the impaired neuropharmacological response to opioids at the CNS level. A multiparametric PET study was conducted in rats. Rats received morphine daily to induce tolerance (15 mg/kg/day for 5 days), followed by 2-day withdrawal.

View Article and Find Full Text PDF

Intranasal Administration of the Combination of Dextro-Ketamine and Dexmedetomidine for Treatment of Diabetic Neuropathic Pain in Rats.

J Pain Res

January 2025

Programa de Pós-Graduação em Medicina (Cirurgia Geral), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Introduction: Diabetes mellitus (DM) has become a public health problem, which is associated with high morbidity and mortality, due to the chronic complications, such as diabetic neuropathy. Current recommendations for the treatment of neuropathic pain achieve a reduction of 30% in only 30% of cases. Therefore, it is necessary to identify new therapeutic approaches to improve the quality of life of diabetic patients.

View Article and Find Full Text PDF

Previous investigations have revealed the role of GABAergic and serotonergic systems in the modulation of pain behavior. This research aimed to examine the effects of intracerebroventricular (i.c.

View Article and Find Full Text PDF

Tolerance to the antinociceptive effects of opioids is a major concern. Studies have shown that chronic use of non-steroidal anti-inflammatory (NSAIDs) causes significant tolerance and cross-tolerance to morphine. Chronic NSAIDs use can increase the risk of certain diseases, such as peptic ulcers, and exacerbate others, like heart failure.

View Article and Find Full Text PDF

The therapeutic benefits of opioids are compromised by the development of analgesic tolerance, which necessitates higher dosing for pain management thereby increasing the liability for drug dependence and addiction. Rodent models indicate opposing roles of the gut microbiota in tolerance: morphine-induced gut dysbiosis exacerbates tolerance, whereas probiotics ameliorate tolerance. Not all individuals develop tolerance, which could be influenced by differences in microbiota, and yet no study design has capitalized upon this natural variation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!