Background/objective: The menisci of the mammalian knee joint balance the incongruence between femoral condyle and tibial plateau and thus menisci absorb and distribute high loads. Degeneration processes of the menisci lead to pain syndromes in the knee joint. The origin of such degenerative processes on meniscal tissue is rarely understood and may be described best as an imbalance of anabolic and catabolic metabolism. A standardized animal model of meniscal degeneration is needed for further studies. The aim of the current study was to develop a porcine animal model with early meniscal degeneration.
Material And Methods: Resection of the anterior cruciate ligament (ACLR) was performed on the left knee joints of eight Göttingen minipigs. A sham operation was carried out on the right knee joint. The grade of degeneration was determined 26 weeks after the operation using histology and magnetic resonance imaging (MRI). Furthermore, the expression of 14 genes which code for extracellular matrix proteins, catabolic matrix metalloproteinases and inflammation mediators were analyzed.
Results: Degenerative changes were detected by a histological analysis of the medial meniscus after ACLR. These changes were not detected by MRI. In terms of their gene expression profile, these degenerated medial menisci showed a significantly increased expression of COL1A1.
Conclusion: This paper describes a new animal model for early secondary meniscal degeneration in the Göttingen minipig. Histopathological evidence of the degenerative changes could be described. This early degenerative changes could not be seen by NMR imaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4951152 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159331 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!