Ammonia binds to two sites in the oxygen-evolving complex (OEC) of Photosystem II (PSII). The first is as a terminal ligand to Mn in the S2 state, and the second is at a site outside the OEC that is competitive with chloride. Binding of ammonia in this latter secondary site results in the S2 state S = (5)/2 spin isomer being favored over the S = (1)/2 spin isomer. Using electron paramagnetic resonance spectroscopy, we find that ammonia binds to the secondary site in wild-type Synechocystis sp. PCC 6803 PSII, but not in D2-K317A mutated PSII that does not bind chloride. By combining these results with quantum mechanics/molecular mechanics calculations, we propose that ammonia binds in the secondary site in competition with D1-D61 as a hydrogen bond acceptor to the OEC terminal water ligand, W1. Implications for the mechanism of ammonia binding via its primary site directly to Mn4 in the OEC are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.6b00543DOI Listing

Publication Analysis

Top Keywords

ammonia binds
12
secondary site
12
ammonia binding
8
oxygen-evolving complex
8
spin isomer
8
binds secondary
8
ammonia
6
site
5
binding second
4
second coordination
4

Similar Publications

To address the challenge of antibiotic-containing wastewater, a novel micromagnetic carrier-modified integrated fixed-film activated sludge system (MC-IFAS) was developed for treating tetracycline (TC)-containing swine wastewater in this study. The magnetic effects of the MC significantly enhanced TC removal by improving TC biosorption and biodegradation in both the suspended activated sludge and the carrier-attached biofilm in the MC-IFAS. The increased electrostatic attraction and number of binding sites in both the activated sludge and the biofilm enhanced their TC biosorption capacities, particularly in the activated sludge.

View Article and Find Full Text PDF

Glutamine Synthetase: Diverse Regulation and Functions of an Ancient Enzyme.

Biochemistry

January 2025

Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132, United States.

Glutamine synthetase (GS) is a ubiquitous enzyme central to nitrogen metabolism, catalyzing the ATP-dependent formation of glutamine from glutamate and ammonia. Positioned at the intersection of nitrogen metabolism with carbon metabolism, the activity of GS is subject to sophisticated regulation. While the intricate regulatory pathways that govern GS were established long ago, recent work has demonstrated that homologues are controlled by multiple distinct regulatory patterns, such as the metabolite induced oligomeric state formation in archaeal GS by 2-oxoglutarate.

View Article and Find Full Text PDF

Bioinformatics and Computationally Supported Redesign of Aspartase for β-Alanine Synthesis by Acrylic Acid Hydroamination.

ACS Catal

January 2025

Chemical Biotechnology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, the Netherlands.

Aspartate ammonia lyases catalyze the reversible amination of fumarate to l-aspartate. Recent studies demonstrate that the thermostable enzyme from sp. YM55-1 (AspB) can be engineered for the enantioselective production of substituted β-amino acids.

View Article and Find Full Text PDF

Violet LED light-activated MdHY5 positively regulates phenolic accumulation to inhibit fresh-cut apple fruit browning.

Hortic Res

January 2025

Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.

Fresh-cut fruit browning severely affects the appearance of fruit. Light treatment can effectively inhibit fresh-cut apple fruit browning, but the regulatory mechanism remains unknown. Here, we discovered that violet LED (Light-Emitting-Diode) light treatment significantly reduced fresh-cut apple fruit browning.

View Article and Find Full Text PDF

Atomically Dispersed FeMo Dual Sites for Enhanced Electrocatalytic Nitrogen Reduction.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

The electrocatalytic nitrogen reduction reaction (eNRR) is an attractive strategy for the green and distributed production of ammonia (NH); however, it suffers from weak N adsorption and a high energy barrier of hydrogenation. Atomically dispersed metal dual-site catalysts with an optimized electronic structure and exceptional catalytic activity are expected to be competent for knotty hydrogenation reactions including the eNRR. Inspired by the bimetallic FeMo cofactor in biological nitrogenase, herein, an atomically dispersed FeMo dual site anchored in nitrogen-doped carbon is proposed to induce a favorable electronic structure and binding energy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!