AI Article Synopsis

  • MicroRNAs are important regulators in cells, especially relating to cancer, and studying their profiles during cancer progression can help identify key targets for treatment.
  • In a study using rats with cancer induced by dimethylbenz[a]-anthracene, eight specific microRNAs were found to be linked to mammary tumor progression.
  • Calorie restriction was shown to improve tumor-free survival and reduce tumor size by decreasing the expression of miR-200a, suggesting that targeting this microRNA may be a potential strategy for cancer prevention.

Article Abstract

MicroRNAs have emerged as ubiquitous post-transcriptional regulators that coordinate many fundamental processes within cells, including those commonly linked to cancer when dysregulated. Profiling microRNAs across stages of cancer progression provides focus as to which microRNAs are key players in cancer development and are therefore important to manipulate with interventions to delay cancer onset and progression. Calorie restriction is one of the most effective preventive interventions across many types of cancer, although its effects on microRNAs have not been well characterized. We used the dimethylbenz[a]-anthracene-induced model of luminal mammary cancer in Sprague Dawley rats to elucidate which microRNAs are linked to progression in this type of cancer and, subsequently, to study how calorie restriction affects such microRNAs. We identified eight microRNAs (miR-10a, miR-10b, miR-21, miR-124, miR-125b, miR-126, miR-145 and miR-200a) to be associated with DMBA-induced mammary tumor progression. Calorie restriction, which greatly increased tumor-free survival and decreased the overall size of tumors that did develop, significantly decreased the expression of one microRNA, miR-200a, which was positively associated with tumor progression. We further showed that inhibition of miR-200a function, mimicking the effect of calorie restriction on this microRNA, inhibited proliferation in both rat (LA7) and human (MCF7) luminal mammary cancer cell lines. These findings present, for the first time, a stage-specific profile of microRNAs in a rodent model of luminal mammary cancer. Furthermore, we have identified the regulation of miR-200a, a microRNA that is positively associated with progression in this model, as a possible mechanism contributing to the anticancer effects of calorie restriction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4951048PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159686PLOS

Publication Analysis

Top Keywords

calorie restriction
24
luminal mammary
12
mammary cancer
12
cancer
10
anticancer effects
8
effects calorie
8
micrornas
8
progression calorie
8
model luminal
8
tumor progression
8

Similar Publications

Beneficial Effects of a Moderately High-Protein Diet on Telomere Length in Subjects with Overweight or Obesity.

Nutrients

January 2025

Department of Nutrition, Food Sciences and Physiology, Center for Nutrition and Research, University of Navarra, 31008 Pamplona, Spain.

Background And Aim: Telomere length (TL) is a key biomarker of cellular aging, with shorter telomeres associated with age-related diseases. Lifestyle interventions mitigating telomere shortening are essential for preventing such conditions. This study aimed to examine the effects of two weight loss dietary strategies, based on a moderately high-protein (MHP) diet and a low-fat (LF) diet on TL in individuals with overweight or obesity.

View Article and Find Full Text PDF

The Impact of a Very-Low-Calorie Ketogenic Diet on Monocyte Subsets of Patients with Obesity: A Pilot Study.

Nutrients

January 2025

Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy.

Obesity is closely linked to chronic low-grade inflammation and the development of cardio-metabolic comorbidities. Monocyte subsets, which are crucial in immune responses, have been reported to be altered in individuals with obesity, potentially exacerbating inflammation. Although very-low-calorie ketogenic diets (VLCKDs) are recognized for their efficacy in promoting weight loss and improving metabolic health, their impact on circulating monocyte subsets remains poorly understood.

View Article and Find Full Text PDF

Cellular senescence is a state of permanent cell cycle arrest accompanied by metabolic activity and characteristic phenotypic changes. This process is crucial for developing age-related diseases, where excessive calorie intake accelerates metabolic dysfunction and aging. Overnutrition disturbs key metabolic pathways, including insulin/insulin-like growth factor signaling (IIS), the mammalian target of rapamycin (mTOR), and AMP-activated protein kinase.

View Article and Find Full Text PDF

: Anorexia nervosa (AN) is a complex psychiatric disorder characterized by an extreme fear of gaining weight, leading to severe calorie restriction and weight loss. Beyond its psychiatric challenges, AN has significant physical consequences affecting multiple organ systems. Recent research has increasingly focused on the interplay between autoantibodies, oxidative stress, and nutritional state in this condition.

View Article and Find Full Text PDF

Healthy dietary patterns rich in legumes can improve metabolic health, although their additional benefits in conjunction with calorie restriction have not been well-established. We investigated effects of a calorie-restricted, legume-enriched, multicomponent intervention diet compared with a calorie-restricted control diet in 127 Chinese prediabetes participants, living in Singapore. The study was a 16-week, single-blind, parallel-design, randomized controlled trial (n = 63 intervention group (IG), n = 64 control group (CG); mean ± SD age 62.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!