In this study, Co/Al203 catalyst for Fischer-Tropsch synthesis was prepared via slurry impregnation method and the catalyst was characterized by various techniques such as TPR, XRD, TGA and N2 physisorption. To dissolve the wax, after-reaction catalyst was dewaxed using n-Hexane at 60 *C. The experiments were performed in a bench-scale fixed-bed reactor, under the reaction condition of 230 degrees C, 20 bar and feed volume ratio of H2:CO:N2 = 2:1:0.5-1.5. The methane selectivity and the ratio of olefin to paraffin among C2-C4 hydrocarbons were increased with higher contents of nitrogen in feed gas which result in higher partial pressure ratio of H2 to CO, and also affect methane selectivity which has a significant role in increased CO conversion.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2016.11938DOI Listing

Publication Analysis

Top Keywords

nitrogen feed
8
fischer-tropsch synthesis
8
fixed-bed reactor
8
methane selectivity
8
studies role
4
role nitrogen
4
feed fischer-tropsch
4
synthesis fixed-bed
4
reactor system
4
system study
4

Similar Publications

Effects of Dietary Iron Levels on the Production Performance, Nutrient Digestibility, Blood Biochemistry, and Meat and Fur Quality of Growing Rex Rabbits.

Animals (Basel)

January 2025

Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Department of Animal Science and Technology, Shandong Agricultural University, Tai'an 271017, China.

The objective of this study was to explore the effects of dietary iron (Fe) levels on the production performance, nutrient digestibility, blood biochemistry, and meat and fur quality of growing Rex rabbits. Two hundred 3-month-old Rex rabbits were randomly allocated to five groups, each with forty replicates. Rabbits were fed a basal diet supplemented with varying levels of Fe (0, 20, 40, 80, and 160 mg/kg) in the form of ferrous sulfate monohydrate.

View Article and Find Full Text PDF

With the increasing demand for enhancing livestock production performance and optimizing feed efficiency, this study aimed to investigate the effects of fermented total mixed ration (FTMR) containing different proportions of rice straw and sheath and leaves of on systemic nutrient metabolism and oxidative metabolism under host genetic regulation and on growth performance of heifers. A total of 157 heifers aged 7-8 months were selected, and their hair was collected for whole-genome sequencing. They were randomly assigned into four groups of 18 to 21 cattle each and fed FTMR containing varying levels of rice straw (21% in LSF, 28% in MSF, 35% in HSF) or 31% sheath and leaves of (ZF) for a two-month period.

View Article and Find Full Text PDF

Integrated Assessment of Productive, Environmental, and Social Performances of Adopting Low-Protein Diets Technology for Laying Hens.

Animals (Basel)

January 2025

State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.

China, the world's largest egg producer, faces challenges of protein feed shortages and nitrogen pollution from manure. Low-protein diets (LPDs) offer potential solutions, but their adoption by small-scale farmers is uncertain. This study used surveys, meta-analysis, life-cycle assessment, and life-cost analysis to address these gaps.

View Article and Find Full Text PDF

Cowpea is deemed as a food security crop due to its ability to produce significant yields under conditions where other staples fail. Its resilience in harsh environments; such as drought, heat and marginal soils; along with its nitrogen-fixing capabilities and suitability as livestock feed make cowpea a preferred choice in many farming systems across sub-Saharan Africa (SSA). Despite its importance, Cowpea yields in farmers' fields remain suboptimal, primarily due to biotic and abiotic factors and the use of either unimproved varieties or improved varieties that are not well-suited to local conditions.

View Article and Find Full Text PDF

Solid-state fermentation of lignocellulosic waste to produce feed protein is a means of realising solid waste. However, low efficiency and susceptibility to microbial contamination remain significant challenges in feed protein production through room-temperature solid-state fermentation. In this study, thermophilic microbiomes were enriched.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!