Photocatalytic degradation of methylene blue (MB) in water was examined using W-doped TiO2 nanofibers prepared by a sol-gel derived electrospinning and subsequent calcination for 4 h at 550 degrees C. Different concentrations of W dopant in the range of 0 to 8 mol% were synthesized to evaluate the effect of W concentration on the photocatalytic activity of TiO2. XRD results indicated that the undoped TiO2 is composed of anatase and rutile phases. The rutile phase was transformed to anatase phase completely with the W doping. Among W-TiO2 catalysts, the 2 mol% W-TiO2 catalyst showed the highest MB degradation rate. The degradation kinetic constant increased from 1.04 x 10(-3) min(-1) to 3.54 x 10(-3) min(-1) with the increase of W doping from 0 to 2 mol%, but decreased down to 1.77 x 10(-3) min(-1) when the W content was 8 mol%. It can be concluded that the degradation of MB under UV radiation was more efficient with W-TiO2 catalysts than with pure TiO2-
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2016.11970 | DOI Listing |
Sci Total Environ
January 2025
Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangzhou, 510000, China.
OH-mediated advanced oxidation processes (AOPs) are widely used in wastewater treatment and drinking water purification. Recently, an increasing number of studies have indicated that common inorganic nitrogen ions can efficiently generate •OH under UV irradiation, demonstrating strong performance in the degradation of various contaminants. Conversely, the presence of inorganic nitrogen ions in UV or other oxidation processes dramatically increases the yield of toxic nitro (so)-aromatic products and the formation potential of nitrogenous disinfection by-products with high genotoxicity and cytotoxicity.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea. Electronic address:
Carbon dot-based nanozymes have gained significant attention, but their application in dye degradation remains limited due to low activity and challenges in recovery and reuse. To overcome these limitations, high peroxidase-active Co-doped carbon dots (CoCDs) with surface amines were synthesized via hydrothermal method and immobilized onto TEMPO-oxidized cellulose nanofibrils (TOCNF) aerogels using EDC/NHS coupling. For the first time, this study investigates the dye degradation efficiency of CDs nanozyme.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.
This study is the first to convert two waste materials, waste rice noodles (WRN) and red mud (RM), into a low-cost, high-value magnetic photocatalytic composite. WRN was processed via a hydrothermal method to produce a solution containing carbon quantum dots (CQDs). Simultaneously, RM was dissolved in acid to form a Fe ion-rich solution, which was subsequently mixed with the CQDs solution and underwent hydrothermal treatment.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Hospital Surgery, Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technology, Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia.
Background/objectives: The aim was to study the possibilities of biomedical application of gadolinium oxide nanoparticles (GdO NPs) synthesized under industrial conditions, and evaluate their physicochemical properties, redox activity, biological activity, and safety using different human cell lines.
Methods: The powder of GdO NPs was obtained by a process of thermal decomposition of gadolinium carbonate precipitated from nitrate solution, and was studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, mass spectrometry, and scanning electron microscopy (SEM) with energy dispersive X-ray analyzer (EDX). The redox activity of different concentrations of GdO NPs was studied by the optical spectroscopy (OS) method in the photochemical degradation process of methylene blue dye upon irradiation with an optical source.
J Clin Med
December 2024
Second Department of Internal Medicine, University of Toyama, Toyama 930-8555, Japan.
Hypoxia-inducible factor-prolyl hydroxylase (HIF-PH) inhibitors have been developed as a treatment for renal anemia. However, their therapeutic impact on patients with concomitant heart failure remains uncertain. We investigated the impact of HIF-PH inhibitors on improving renal anemia and associated clinical outcomes in patients with heart failure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!