Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The alpha-Fe2O3 nanotubes with diameters of 400-700 nm have been prepared via the sol-gel assisted electrospinning and subsequent one-step heat treatment with ferric nitrate, ethanol and poly(vinyl pyrrolidone) as starting regents. The resultant alpha-Fe2O3 nanotubes were characterized by XRD, SEM, TEM, and VSM techniques. The hollow structure is mainly influenced by the water content in the gel precursor and the heating rate, and the hollow formation mechanism of alpha-Fe2O9 nanotubes is discussed. Adsorption of BSA onto the as-prepared alpha-Fe2O3 nanotubes exhibits a good capacity of 56.5 mg/g with the initial BSA concentration of 1.0 mg/mL, which demonstrates their feasibility in delivery of biomacromolecules. Subsequently, the adsorption characteristics of DNA onto the alpha-Fe2O3 nanotubes were investigated, and the adsorbance of DNA can achieve a maximum value of 4.19 microg/g when the initial DNA concentration is 50 microg/mL. The adsorption process of DNA onto alpha-Fe2O3 nanotubes can be described well by the pseudo-first-order kinetic model at room temperature according to the correlation coefficient R2 = 0.9978.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2016.10717 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!