A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Vascular Smooth Muscle Sirtuin-1 Protects Against Diet-Induced Aortic Stiffness. | LitMetric

Arterial stiffness, a major cardiovascular risk factor, develops within 2 months in mice fed a high-fat, high-sucrose (HFHS) diet, serving as a model of human metabolic syndrome, and it is associated with activation of proinflammatory and oxidant pathways in vascular smooth muscle (VSM) cells. Sirtuin-1 (SirT1) is an NAD(+)-dependent deacetylase regulated by the cellular metabolic status. Our goal was to study the effects of VSM SirT1 on arterial stiffness in the context of diet-induced metabolic syndrome. Overnight fasting acutely decreased arterial stiffness, measured in vivo by pulse wave velocity, in mice fed HFHS for 2 or 8 months, but not in mice lacking SirT1 in VSM (SMKO). Similarly, VSM-specific genetic SirT1 overexpression (SMTG) prevented pulse wave velocity increases induced by HFHS feeding, during 8 months. Administration of resveratrol or S17834, 2 polyphenolic compounds known to activate SirT1, prevented HFHS-induced arterial stiffness and were mimicked by global SirT1 overexpression (SirT1 bacterial artificial chromosome overexpressor), without evident metabolic improvements. In addition, HFHS-induced pulse wave velocity increases were reversed by 1-week treatment with a specific, small molecule SirT1 activator (SRT1720). These beneficial effects of pharmacological or genetic SirT1 activation, against HFHS-induced arterial stiffness, were associated with a decrease in nuclear factor kappa light chain enhancer of activated B cells (NFκB) activation and vascular cell adhesion molecule (VCAM-1) and p47phox protein expressions, in aorta and VSM cells. In conclusion, VSM SirT1 activation decreases arterial stiffness in the setting of obesity by stimulating anti-inflammatory and antioxidant pathways in the aorta. SirT1 activators may represent a novel therapeutic approach to prevent arterial stiffness and associated cardiovascular complications in overweight/obese individuals with metabolic syndrome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4982825PMC
http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.07622DOI Listing

Publication Analysis

Top Keywords

arterial stiffness
28
metabolic syndrome
12
pulse wave
12
wave velocity
12
sirt1
11
vascular smooth
8
smooth muscle
8
stiffness
8
months mice
8
mice fed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!