Background And Objectives: The aim of the study were to demonstrate the possible hemodynamic changes and cerebral blood flow alterations in patients who were positioned from supine to beach chair position; and to detect if the position change causes any cortical activity alteration as measured by the 4-channeled electroencephalography monitor.
Methods: 35 patients were included. Before the induction, mean arterial pressure and patient state index values were recorded (T0). After the intubation, doppler-ultrasonography of the patients' internal carotid and vertebral arteries were evaluated to acquire cerebral blood flow values from the formula. In supine position, mean arterial pressure, patient state index and cerebral blood flow values were recorded (T1) and the patient was positioned to beach chair position. After 5min all measurements were repeated (T2). Measurements of patient state index and mean arterial pressure were repeated after 20 (T3), and 40 (T4)min.
Results: There was a significant decrease between T0 and T1 in heart rate (80.5±11.6 vs. 75.9±14.4beats/min), MAP (105.8±21.9 vs. 78.9±18.4mmHg) and PSI (88.5±8.3 vs. 30.3±9.7) (all p<0.05). Mean arterial pressure decreased significantly after position change, and remained decreased, compared to T1. The overall analysis of patient state index values (T1-T4) showed no significant change; however, comparing only T1 and T2 resulted in a statically significant decrease in patient state index. There was a significant decrease in cerebral blood flow after beach chair position.
Conclusion: Beach chair position was associated with a decrease in cerebral blood flow and patient state index values. Patient state index was affected by the gravitational change of the cerebral blood flow; however, both factors were not directly correlated to each other. Moreover, the decrease in patient state index value was transient and returned to normal values within 20min.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bjan.2015.09.004 | DOI Listing |
Metab Brain Dis
January 2025
The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541199, Guangxi, China.
Type 2 diabetes (T2D) is an important risk factor for brain cognitive impairment, but the specific mechanism is still unclear. The imbalance of gut microbiota under pathological conditions (such as an increase in pathogenic bacteria) may be involved in the occurrence of various diseases. The purpose of this study is to investigate the effect of increased abundance of gut Citrobacter rodentium on cognitive function in T2D mice.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaounde, Cameroon.
Alzheimer's disease (AD) is associated with cognitive impairments which are linked to a deficit in cholinergic function. The objective of this study was to evaluate the ability of TeMac™ to prevent memory impairment in scopolamine-rats model of Alzheimer's disease and by in silico approaches to identify molecules in TeMac™ inhibiting acetylcholinesterase. The cholinergic cognitive dysfunction was induced by intraperitoneal injection of scopolamine (1 mg/kg daily) in male Wistar rats for seven consecutive days.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Kobayashi Hospital, 510 Imaichi, Izumo City, Shimane, 693-0001, Japan.
Adverse effects of advanced age and poor initial neurological status on outcomes of patients with aneurysmal subarachnoid hemorrhage (SAH) have been documented. While a predictive model of the non-linear correlation between advanced age and clinical outcome has been reported, no previous model has been validated. Therefore, we created a prediction model of the non-linear correlation between advanced age and clinical outcome by machine learning and validated it using a separate cohort.
View Article and Find Full Text PDFJ Mol Neurosci
January 2025
Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
Hemorrhagic stroke is a known complication of glioma, yet the underlying mechanisms remain poorly understood. This study aims to investigate key biomarkers of glioma-related hemorrhage to provide insights into glioma molecular therapies. Data were obtained from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases to analyze differentially expressed genes (DEGs) in glioma by contrasting glioblastoma (GBM) with low-grade gliomas (LGGs).
View Article and Find Full Text PDFBackground: Group B streptococcus (GBS) causes neonatal invasive disease, mainly sepsis and meningitis. Understanding the clinical characteristics, laboratory tests, and antibiotic resistance patterns of GBS invasive infections provides reliable epidemiological data for preventing and treating GBS infections.
Methods: Clinical characteristics and laboratory test results from 86 patients with neonatal invasive disease (45 cases of early-onset disease [EOD] and 41 cases of late-onset disease [LOD]) recruited from Fujian Maternity and Child Health Hospital between January 2012 and December 2021 were analyzed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!