Carbon-nanotube (CNT) fibers integrate such properties as high mechanical strength, extraordinary structural flexibility, high thermal and electrical conductivities, novel corrosion and oxidation resistivities, and high surface area, which makes them a very promising candidate for next-generation smart textiles and wearable devices. A brief review of the preparation of CNT fibers and recently developed CNT-fiber-based flexible and functional devices, which include artificial muscles, electrochemical double-layer capacitors, lithium-ion batteries, solar cells, and memristors, is presented.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201601186DOI Listing

Publication Analysis

Top Keywords

wearable devices
8
smart textiles
8
cnt fibers
8
carbon-nanotube fibers
4
fibers wearable
4
devices smart
4
textiles carbon-nanotube
4
carbon-nanotube cnt
4
fibers integrate
4
integrate properties
4

Similar Publications

Prehospital medical care is a major challenge for both civilian and military situations as resources are limited, yet critical triage and treatment decisions must be rapidly made. Prehospital medicine is further complicated during mass casualty situations or remote applications that require more extensive medical treatments to be monitored. It is anticipated on the future battlefield where air superiority will be contested that prolonged field care will extend to as much 72 h in a prehospital environment.

View Article and Find Full Text PDF

Wearable Solutions Using Physiological Signals for Stress Monitoring on Individuals with Autism Spectrum Disorder (ASD): A Systematic Literature Review.

Sensors (Basel)

December 2024

REMIT (Research on Economics, Management and Information Technologies), IJP (Instituto Jurídico Portucalense), Universidade Portucalense, Rua Dr. António Bernardino de Almeida, 541-619, 4200-072 Porto, Portugal.

Some previous studies have focused on using physiological signals to detect stress in individuals with ASD through wearable devices, yet few have focused on how to design such solutions. Wearable technology may be a valuable tool to aid parents and caregivers in monitoring the emotional states of individuals with ASD who are at high risk of experiencing very stressful situations. However, effective wearable devices for individuals with ASD may need to differ from solutions for those without ASD.

View Article and Find Full Text PDF

Personalized Clustering for Emotion Recognition Improvement.

Sensors (Basel)

December 2024

Instituto de Estudios de Género, Universidad Carlos III de Madrid, Calle Madrid, 126, 28903 Getafe, Spain.

Emotion recognition through artificial intelligence and smart sensing of physical and physiological signals (affective computing) is achieving very interesting results in terms of accuracy, inference times, and user-independent models. In this sense, there are applications related to the safety and well-being of people (sexual assaults, gender-based violence, children and elderly abuse, mental health, etc.) that require even more improvements.

View Article and Find Full Text PDF

Electroencephalography (EEG) has emerged as a pivotal tool in both research and clinical practice due to its non-invasive nature, cost-effectiveness, and ability to provide real-time monitoring of brain activity. Wearable EEG technology opens new avenues for consumer applications, such as mental health monitoring, neurofeedback training, and brain-computer interfaces. However, there is still much to verify and re-examine regarding the functionality of these devices and the quality of the signal they capture, particularly as the field evolves rapidly.

View Article and Find Full Text PDF

Mobility tasks like the Timed Up and Go test (TUG), cognitive TUG (cogTUG), and walking with turns provide insights into the impact of Parkinson's disease (PD) on motor control, balance, and cognitive function. We assess the test-retest reliability of these tasks in 262 PD participants and 50 controls by evaluating machine learning models based on wearable-sensor-derived measures and statistical metrics. This evaluation examines total duration, subtask duration, and other quantitative measures across two trials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!