Dielectrophoretic (DEP) forces applied to microscopic particles are highly dependent on the gradient of the electric field experienced by the particles. These DEP forces can be used to selectively capture and remove cells from fluid flows within a micro-channel above the DEP electrodes. Modification of the geometry of the electrodes that generate the electric field is the main approach available to increase the electric field gradient over a wide area, and hence increase the applied dielectrophoretic force. Optimized DEP forces increase attraction or repulsion of target cells from the electrode surface, enhancing the efficacy of electrodes for cell sorting applications. In this paper, we present a design approach, using genetic optimization techniques, to develop novel electrode geometries that effectively capture target particles. The performance of candidate electrode designs is evaluated by calculating simplified particle trajectories.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10544-016-0085-8 | DOI Listing |
Optoelectronic tweezers (OET) offer a versatile, programmable, and contactless method for manipulating microscale objects. While factors like AC voltage and light intensity have been extensively studied, the role of light pattern curvature in the performance of OET manipulation remains underexplored. This study investigates how the curvature of light patterns affects the movement of polystyrene microparticles under negative dielectrophoretic (DEP) forces in an OET system.
View Article and Find Full Text PDFMicrosyst Nanoeng
January 2025
Henry Samueli School of Engineering, University of California, Irvine, CA, USA.
In recent decades, electrokinetic handling of microparticles and biological cells found many applications ranging from biomedical diagnostics to microscale assembly. The integration of electrokinetic handling such as dielectrophoresis (DEP) greatly benefits microfluidic point-of-care systems as many modern assays require cell handling. Compared to traditional pump-driven microfluidics, typically used for DEP applications, centrifugal CD microfluidics provides the ability to consolidate various liquid handling tasks in self-contained discs under the control of a single motor.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Applied Physics, National Defense Academy, Hashirimizu 1-10-20, Yokosuka 239-0802, Kanagawa, Japan.
Dielectrophoresis (DEP) cell separation technology is an effective means of separating target cells which are only marginally present in a wide variety of cells. To develop highly efficient cell separation devices, detailed analysis of the nonuniform electric field's intensity distribution within the device is needed, as it affects separation performance. Here we analytically expressed the distributions of the electric field and DEP force in a parallel-plate cell separation DEP device by employing electrostatic analysis through the Fourier series method.
View Article and Find Full Text PDFLab Chip
January 2025
State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing 100084, P. R. China.
The separation of large-size-range particles of complex biological samples is critical but yet well resolved. As a label-free technique, dielectrophoresis (DEP)-based particle separation faces the challenge of how to configure DEP in an integrated microfluidic device to bring particles of various sizes into the effective DEP force field. Herein, we propose a concept that combines the passive flow fraction mechanism with the accumulative DEP deflection effect in a cascaded manner.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Graduate School of Applied Science and Engineering, National Defense Academy, Yokosuka 239-8686, Japan.
Various types of dielectrophoresis (DEP) cell separation devices using AC electric fields have been proposed and developed. However, its capability is still limited by a lack of quantitative characterization of the relationship between frequency and force. In the present study, this limitation was addressed by developing a method capable of fast and accurate quantification of the dielectric properties of biological cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!