Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: We wanted to depict fibers of the dentatorubrothalamic tract in patients with Parkinson's disease and multiple sclerosis in order to use this knowledge for clinical routine and to show its relation to the corticospinal tract for deep brain stimulation. Fibers of these white matter tracts were depicted between February 2014 and February 2015 in nine patients of all ages. There were seven men and two women. The mean age was 60 years. We used a 3DT1 sequence for the navigation. Additional scanning time was less than 9 min. Both tracts were portrayed in all patients.
Results: We were able to successfully portray these white matter tracts in all patients. We visualized the medial and lateral parts of the corticospinal tract by using a region of interest which covered the whole motor cortex. Furthermore we segmented the motor cortex. The fibers ran from this area of the brain through the internal capsule and they could be followed until their entry in the brainstem. The dentatorubrothalamic tract was smaller than the corticospinal tract. It was situated medio-posteriorly of the corticospinal tract. After decussation to the contralateral red nucleus it was localised next to the midline when it entered the motor cortex. From the thalamus on, it proceeds medially and posteriorly of the corticospinal tract further to the motor cortex. Depiction of the whole tract is essential for the differentiation of the dentatorubrothalamic tract with the corticospinal tract.
Conclusions: The depiction of the dentatorubrothalamic tract might be useful for neurosurgeons when deep brain stimulation is planned. Knowing its relation to other white matter tracts can help physicians like neurosurgeons or neurologists avoid side effects and deal with patients with DBS. The position of the electrode might be crucial for a satisfactory outcome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4950228 | PMC |
http://dx.doi.org/10.1186/s13104-016-2162-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!