Major transitions in nature and human society are accompanied by a substantial change towards higher complexity in the core of the evolving system. New features are established, novel hierarchies emerge, new regulatory mechanisms are required and so on. An obvious way to achieve higher complexity is integration of autonomous elements into new organized systems whereby the previously independent units give up their autonomy at least in part. In this contribution, we reconsider the more than 40 years old hypercycle model and analyse it by the tools of stochastic chemical kinetics. An open system is implemented in the form of a flow reactor. The formation of new dynamically organized units through integration of competitors is identified with transcritical bifurcations. In the stochastic model, the fully organized state is quasi-stationary whereas the unorganized state corresponds to a population with natural selection. The stability of the organized state depends strongly on the number of individual subspecies, n, that have to be integrated: two and three classes of individuals, [Formula: see text] and [Formula: see text], readily form quasi-stationary states. The four-membered deterministic dynamical system, [Formula: see text], is stable but in the stochastic approach self-enhancing fluctuations drive it into extinction. In systems with five and more classes of individuals, [Formula: see text], the state of cooperation is unstable and the solutions of the deterministic ODEs exhibit large amplitude oscillations. In the stochastic system self-enhancing fluctuations lead to extinction as observed with [Formula: see text] Interestingly, cooperative systems in nature are commonly two-membered as shown by numerous examples of binary symbiosis. A few cases of symbiosis of three partners, called three-way symbiosis, have been found and were analysed within the past decade. Four-way symbiosis is rather rare but was reported to occur in fungus-growing ants. The model reported here can be used to illustrate the interplay between competition and cooperation whereby we obtain a hint on the role that resources play in major transitions. Abundance of resources seems to be an indispensable prerequisite of radical innovation that apparently needs substantial investments. Economists often claim that scarcity is driving innovation. Our model sheds some light on this apparent contradiction. In a nutshell, the answer is: scarcity drives optimization and increase in efficiency but abundance is required for radical novelty and the development of new features.This article is part of the themed issue 'The major synthetic evolutionary transitions'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4958933 | PMC |
http://dx.doi.org/10.1098/rstb.2015.0439 | DOI Listing |
Sci Adv
January 2025
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA.
Predicting the dynamics of turbulent fluids has been an elusive goal for centuries. Even with modern computers, anything beyond the simplest turbulent flows is too chaotic and multiscaled to be directly simulatable. An alternative is to treat turbulence probabilistically, viewing flow properties as random variables distributed according to joint probability density functions (PDFs).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Earth Sciences, University College London, London WC1E 6BT, United Kingdom.
CaSiO[Formula: see text] perovskite (CaPv) is the last major mineral in the Earth's lower mantle whose elasticity remains largely unresolved. Here, we investigate the elasticity of CaPv using ab initio machine-learning force fields (MLFF). At room temperature, the elasticity of tetragonal CaPv determined by MLFF molecular dynamics (MD) agrees well with experimental measurements after considering temperature induced variations in the hydrostatic structure, proving the effectiveness of the method.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
Persistent homology applied to the activity of grid cells in the Medial Entorhinal Cortex suggests that this activity lies on a toroidal manifold. By analyzing real data and a simple model, we show that neural oscillations play a key role in the appearance of this toroidal topology. To quantitatively monitor how changes in spike trains influence the topology of the data, we first define a robust measure for the degree of toroidality of a dataset.
View Article and Find Full Text PDFAntimicrob Agents Chemother
January 2025
Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China.
Eravacycline is a broad-spectrum fluorocycline currently approved for complicated intra-abdominal infections (cIAIs). In lung-infection models, it is effective against methicillin-resistant (MRSA) and tetracycline-resistant MRSA. As such, we aimed to develop a population pharmacokinetic/pharmacodynamic (PK/PD) model to evaluate eravacycline's pulmonary distribution and kinetics.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Department of Biology, Indiana University, Bloomington, IN 47405, USA.
The factors contributing to the persistence and stability of life are fundamental for understanding complex living systems. Organisms are commonly challenged by harsh and fluctuating environments that are suboptimal for growth and reproduction, which can lead to extinction. Many species contend with unfavourable and noisy conditions by entering a reversible state of reduced metabolic activity, a phenomenon known as dormancy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!