Effect of Biophysical Properties of Phosphatidylserine Particle on Immune Tolerance Induction Toward Factor VIII in a Hemophilia A Mouse Model.

J Pharm Sci

Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14215. Electronic address:

Published: October 2016

A major complication in the replacement therapy of Factor VIII (FVIII) for Hemophilia A is the development of unwanted immune responses. Previous studies from our laboratory have shown that pretreatment of FVIII in the presence of phosphatidylserine (PS) resulted in hyporesponsiveness to subsequent administration of FVIII alone, due to the ability of PS to convert an immunogen to a tolerogen. We investigated the importance of biophysical properties of PS liposomes on its ability to convert an immunogen to a tolerogen. PS particles were prepared differing in size, protein-lipid topology, lamellarity, and % association to FVIII keeping the composition of the particle same. PS particles were prepared in 2 different sizes with differing biophysical properties: smaller particles in the nanometer range (200 nm) and larger size particles in the micron range (2 μm). Hemophilia A animals treated with both the nanometer and micron size PS particles showed a significant reduction in anti-FVIII antibody titers when compared to animals receiving free FVIII alone. Upon rechallenge with free FVIII animals that received FVIII along with the nanometer size particle continued to show reduced antibody responses. Animals receiving the micron size particle showed a slight increase in titers although they remained significantly lower than the free FVIII treated group. Upon culture with bone marrow derived dendritic cells, the nanometer size particle showed a reduction in CD40 expression and an increase in transforming growth factor-β cytokine production, which was not observed with the micron size particle. These results show that biophysical properties of PS play an important role in tolerance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021571PMC
http://dx.doi.org/10.1016/j.xphs.2016.06.008DOI Listing

Publication Analysis

Top Keywords

biophysical properties
16
size particle
16
micron size
12
free fviii
12
factor viii
8
fviii
8
ability convert
8
convert immunogen
8
immunogen tolerogen
8
particles prepared
8

Similar Publications

The physiological, functional, and structural properties of proteins and their pathogenic variants can be summarized using many tools. The information relating to a single protein is often spread among different sources requiring different programs for access. It is not always easy to select, simultaneously visualize, and compare specific properties of different proteins.

View Article and Find Full Text PDF

Simulated brain networks reflecting progression of Parkinson's disease.

Netw Neurosci

December 2024

Institute of Neurosciences and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, 52425 Jülich, Germany.

The neurodegenerative progression of Parkinson's disease affects brain structure and function and, concomitantly, alters the topological properties of brain networks. The network alteration accompanied by motor impairment and the duration of the disease has not yet been clearly demonstrated in the disease progression. In this study, we aim to resolve this problem with a modeling approach using the reduced Jansen-Rit model applied to large-scale brain networks derived from cross-sectional MRI data.

View Article and Find Full Text PDF

Cyclic diadenosine monophosphate (c-di-AMP) is a recently discovered second messenger that modulates several signal transduction pathways in bacterial and host cells. Besides the bacterial system, c-di-AMP signaling is also connected with the host cytoplasmic surveillance pathways (CSP) that induce type-I IFN responses through STING-mediated pathways. Additionally, c-di-AMP demonstrates potent adjuvant properties, particularly when administered alongside the Bacillus Calmette-Guérin (BCG) vaccine through mucosal routes.

View Article and Find Full Text PDF

Background: Developmental and epileptic encephalopathies (DEE) are rare but severe neurodevelopmental disorders characterised by early-onset seizures often combined with developmental delay, behavioural and cognitive deficits. Treatment for DEEs is currently limited to seizure control and provides no benefits to the patients' developmental and cognitive outcomes. Genetic variants are the most common cause of DEE with KCNQ2 being one of the most frequently identified disease-causing genes.

View Article and Find Full Text PDF

Oleogelation for saturated fat replacement in vegan cheese.

Food Chem

December 2024

Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK; Dept. of Physics, Toronto Metropolitan University, Toronto, Canada. Electronic address:

Oleogelation was investigated to reduce the saturated fat content of vegan cheese. Oleogels were formulated using a range of oleogelators, oleogelator concentrations and oil phase compositions to study the effect that adjusting these parameters had on both oleogel and vegan cheese properties. Comparing oleogels at an equivalent mass basis of 20 wt%, phytosterol oleogels exhibited greater hardness (5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!