Esterquat cationic softener is basically the class of surface active quaternary ammonium compounds. Esterquat compounds were synthesized and their surface behavior, antibacterial activity and Textile softening properties were investigated. Easily found cheap material was used to synthesize cationic fabric softeners. This fabric softener will be a good for commercially and industrially important because their emulsify activity, rewettability dispersing power and softness. Free fatty acids were derived from tallow oil and were treated with triethanolamine and mono-ethanolamine at 140°C. This diester was quaternaries with dimethyl sulphate and benzyl chloride. The synthesized esterquat compounds were characterized by its cationic content, 1H NMR and FT-IR analysis. In addition to the cationic content, surface tension, CMC (critical micelle concentration), rewettability, fabric softening, emulsification and dispersing power were determined as their surface-active properties. The fabric softening activity of esterquat and esteramide prepared from DMS was better softening activity of fabrics compared to untreated cotton and polyester fabrics cloth. The presented result shows that the esterquat made from BCl exhibit the best dispersing power. The esterquat made from DMS both in TEA and MEA shows good rewettability was determined.

Download full-text PDF

Source
http://dx.doi.org/10.5650/jos.ess15276DOI Listing

Publication Analysis

Top Keywords

dispersing power
12
cationic fabric
8
fabric softeners
8
free fatty
8
esterquat compounds
8
cationic content
8
fabric softening
8
softening activity
8
esterquat
6
cationic
5

Similar Publications

Nanogenerators for gas sensing applications.

Front Chem

January 2025

Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China.

Gas sensors are now widely employed in many industries due to the rapid speed of industrialization and the growth of the Internet of Things. However, the wearability and mobility of traditional gas sensors are limited by their high reliance on external power sources. Nanogenerators (NGs) can compensate for their power source limitations when paired with gas sensors by transforming the environment's widely dispersed low-frequency energy into electrical energy, allowing for self-powered gas detection.

View Article and Find Full Text PDF

Polymers have been ruling the packaging industry for decades due to their versatility, easy manufacturability, and low cost. The overuse of non-biodegradable plastics in food packaging has become a serious environmental concern. Multi-walled carbon nanotube (MWCNT) reinforced nanocomposites have exceptional electrical, thermal, and mechanical properties.

View Article and Find Full Text PDF

Deep eutectic solvents (DES) have emerged as versatile, sustainable media for the synthesis of nanomaterials due to their low toxicity, tunability, and biocompatibility. This study develops a one-step method to modify commercially available screen-printed electrodes (SPE) using laser-induced pyrolysis of DES, consisting of choline chloride and tartaric acid with dissolved nickel acetate and dispersed graphene. The electrodes were patterned using a 532 nm continuous-wave laser for the in situ formation of Ni nanoparticles decorated on graphene sheets directly on the SPE surface (Ni-G/SPE).

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) have drawn great attention as promising candidates for realizing next-generation printed thermoelectrics (TEs). However, the dispersion instability and resulting poor printability of CNTs have been major issues for their practical processing and device applications. In this work, we investigated the TE characteristics of water-processable carboxymethyl cellulose (CMC) and single-walled CNT (SWCNT) composite.

View Article and Find Full Text PDF

In microfluidic chips, glass free-form microchannels have obvious advantages in thermochemical stability and biocompatibility compared to polymer-based channels, but they face challenges in processing morphology and quality. Hence, picosecond laser etching with galvanometer scanning is proposed to machine spiral microfluidic channels on a glass substrate. The objective is to disperse and sort microparticles from a glass microchip that is difficult to cut.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!