MicroRNA-21 (miR-21) is overexpressed in patients with rheumatoid arthritis (RA). This study was designed to investigate the effect and mechanism of miR-21 on cell proliferation in fibroblast-like synoviocytes (FLS) of RA. FLS were primary-cultured from a rat RA model. RA-FLS and normal FLS were infected with lentivirus (anti-miR-21 or pro-miR-21) for overexpression or downregulation of miR-21, respectively. The effects of miR-21 overexpression or inhibition on nucleoprotein NF-κB levels and FLS cell proliferation were evaluated by western blotting and MTT assays. The effects of an inhibitor of NF-κB nuclear translocation (BAY 11-7082) were also evaluated. The results showed that the levels of miR-21 and nucleoprotein NF-κB were increased in FLS of RA model rats compared to the control group. Downregulation of miR-21 in RA FLS led to a significant decrease in nucleoprotein NF-κB levels and cell proliferation rates compared to the antinegative control (NC) group. However, miR-21 overexpression in normal FLS resulted in a significant increase of nucleoprotein NF-κB levels and cell proliferation rates compared to the pro-NC group. The effects of miR-21 overexpression were reversed by BAY 11-7082. We concluded that upregulated miR-21 in FLS in RA model rats may promote cell proliferation by facilitating NF-κB nuclear translocation, thus affecting the NF-κB pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939181 | PMC |
http://dx.doi.org/10.1155/2016/9279078 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!