Background: The gene bldA for leucyl [Formula: see text] is known for almost 30 years as a key regulator of morphogenesis and secondary metabolism in genus Streptomyces. Codon UUA is the rarest one in Streptomyces genomes and is present exclusively in genes with auxiliary functions. Delayed accumulation of translation-competent [Formula: see text] is believed to confine the expression of UUA-containing transcripts to stationary phase. Implicit to the regulatory function of UUA codon is the assumption about high accuracy of its translation, e.g. the latter should not occur in the absence of cognate [Formula: see text]. However, a growing body of facts points to the possibility of mistranslation of UUA-containing transcripts in the bldA-deficient mutants. It is not known what type of near-cognate tRNA(s) may decode UUA in the absence of cognate tRNA in Streptomyces, and whether UUA possesses certain inherent properties (such as increased/decreased accuracy of decoding) that would favor its use for regulatory purposes.
Findings: Here we took bioinformatic approach to address these questions. We catalogued the entire complement of tRNA genes from several relevant Streptomyces and identified genes for posttranscriptional modifications of tRNA that might be involved in UUA decoding by cognate and near-cognate tRNAs.
Conclusions: Based on tRNA gene content in Streptomyces genomes, we propose possible scenarios of UUA codon mistranslation. UUA is not associated with an increased rate of missense errors as compared to other leucyl codons, contrasting general belief that low-abundant codons are more error-prone than the high-abundant ones.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4932002 | PMC |
http://dx.doi.org/10.1186/s40064-016-2683-6 | DOI Listing |
In this study, we performed a comparative analysis based on a total of 255 spider mitogenomes and four outgroups, of which the mitogenomes of 39 species were assembled de novo, to explore the phylogenetic relationships and the adaptive evolution of mitogenomes. Results showed that had the longest mitochondrial length and the most pronounced codon preference to be UUA, followed by CCU. Codon usage frequencies were similar between families and codon usage in the mitogenome of spiders was mainly influenced by natural selection pressures rather than G/C mutation bias.
View Article and Find Full Text PDFJ Insect Sci
November 2024
Department of Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management Mountainous Region, Guiyang, Guizhou, China.
Parasitology
December 2024
Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Institute of Pathogens and Vectors, Dali University, Dali, Yunnan, China.
Nucleic Acids Res
December 2024
Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands.
Messenger RNA (mRNA) translation is a tightly controlled process frequently deregulated in cancer. Key to this deregulation are transfer RNAs (tRNAs), whose expression, processing and post-transcriptional modifications are often altered in cancer to support cellular transformation. In conditions of limiting levels of amino acids, this deregulated control of protein synthesis leads to aberrant protein production in the form of ribosomal frameshifting or misincorporation of non-cognate amino acids.
View Article and Find Full Text PDFInsects
August 2024
Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China.
Chironomidae is a cosmopolitan and species-rich family of insects, with many species serving as useful indicators of aquatic ecosystem health. In this study, we newly sequenced six species of Goetghebuer, 1922 (Chironomidae: Chironominae) by high-throughput sequencing technology. We analyzed characters of the mitochondrial genome, including the sequence length, nucleotide composition, and evolutionary rates of this genus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!