Decomposition, nitrogen and carbon mineralization from food and cover crop residues in the central plateau of Haiti.

Springerplus

Department of Crop and Soil Environmental Science, Virginia Tech, Blacksburg, VA 24061 USA.

Published: July 2016

Cover crops are a major focus of conservation agriculture efforts because they can provide soil cover and increase nutrient availability after their mineralization in cropping systems. To evaluate the effect of residue type and placement on rate of decomposition and carbon (C) and nitrogen (N) mineralization, residues from two food crops, maize (Zea mays L.) and common bean (Phaseolus vulgaris L.), and two promising cover crops, sunn hemp (Crotalaria juncea L.) and sorghum sudangrass (Sorghum bicolor [L.] Moench x S. bicolor var. Sudanese [Piper] Stapf) were used in a litterbag study in the Central Plateau region of Haiti from May to September, 2013. Residues were placed in litterbags at a rate equivalent to 3.25 Mg residue ha(-1) either on the soil surface or buried at 15 cm to represent a tilled and no-tillage system, respectively. Initial C:N ratios were: maize > common bean > sorghum sudangrass > sunn hemp. Highest residue mass loss rates and C and N mineralization generally occurred in the reverse order. Overall, surface-placed residues decomposed more slowly with 40 and 17 % of initial residue mass of surface and buried residues, respectively, remaining at 112 days. Carbon and N mineralization was higher when residues were buried. Net N mineralization of buried residues was 0.12, 0.07, 0.06, and 0.03 g N g residue(-1) for sunn hemp, sorghum sudangrass, maize, and common bean, respectively over 112 days. To achieve the goal of increasing nutrient supply while maintaining year-round cover, a combination of grass and legume cover crops may be required with benefits increasing over multiple seasons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4932013PMC
http://dx.doi.org/10.1186/s40064-016-2651-1DOI Listing

Publication Analysis

Top Keywords

cover crops
12
carbon mineralization
8
central plateau
8
common bean
8
sunn hemp
8
sorghum sudangrass
8
surface buried
8
residue mass
8
buried residues
8
residues
7

Similar Publications

Effects of Conservation Agriculture on Soil NO Emissions and Crop Yield in Global Cereal Cropping Systems.

Glob Chang Biol

January 2025

Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, People's Republic of China.

Conservation agriculture, which involves minimal soil disturbance, permanent soil cover, and crop rotation, has been widely adopted as a sustainable agricultural practice globally. However, the effects of conservation agriculture practices on soil NO emissions and crop yield vary based on geography, management methods, and the duration of implementation, which has hindered its widespread scientific application. In this study, we assessed the impacts of no-tillage (NT), both individually and in combination with other conservation agriculture principles, on soil NO emissions and crop yields worldwide, based on 1270 observations from 86 peer-reviewed articles.

View Article and Find Full Text PDF

Background: The use of a high-concentrate diet in fattening camels may have significant effects on growth performance and digestion as well as economic returns. This experiment was designed to study the effects of feeding different levels of concentrate in their diet on growth performance and digestion in a desert climate.

Methods: Eighteen 12-month-old male camel calves were used, and divided into three treatments of six each.

View Article and Find Full Text PDF

Effect of intra- and inter-specific plant interactions on the rhizosphere microbiome of a single target plant at different densities.

PLoS One

January 2025

Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado, United States of America.

Root and rhizosphere studies often focus on analyzing single-plant microbiomes, with the literature containing minimum empirical information about the shared rhizosphere microbiome of multiple plants. Here, the rhizosphere of individual plants was analyzed in a microcosm study containing different combinations and densities (1-3 plants, 24 plants, and 48 plants) of cover crops: Medicago sativa, Brassica sp., and Fescue sp.

View Article and Find Full Text PDF

Declining soil health and productivity are key challenges faced by sugarcane small-scale growers in South Africa. Incorporating Vicia sativa and Vicia villosa as cover crops can improve soil health by enhancing nutrient-cycling enzyme activities and nitrogen (N) contributions while promoting the presence of beneficial bacteria in the rhizosphere. A greenhouse experiment was conducted to evaluate the chemical and biological inputs of V.

View Article and Find Full Text PDF

Small forest patches and landscape-scale fragmentation exacerbate forest fire prevalence in Amazonia.

J Environ Manage

January 2025

School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK; Instituto Juruá, Manaus, Brazil.

Over recent decades, forest fire prevalence has increased throughout the tropics, necessitating improved understanding of the landscape-scale drivers of fire occurrence. Here, we use MapBiomas land-cover and fire scar data to evaluate relationships between forest fragmentation, land-use, and forest fire prevalence in a typically consolidated Amazonian agricultural frontier: Portal da Amazonia, Mato Grosso, Brazil. Using zero-/zero-one-inflated Beta regressions, we investigate effects of forest patch (area, shape, surrounding forest cover) and landscape-scale variables (forest edge length, land-cover composition) on forest fire occurrence and density between 1985 and 2021.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!