Surface functionalization controls local environments and induces solvent-like effects at liquid-solid interfaces. We explored structure-property relationships between organic groups bound to pore surfaces of mesoporous silica nanoparticles and Stokes shifts of the adsorbed solvatochromic dye Prodan. Correlating shifts of the dye on the surfaces with its shifts in solvents resulted in a local polarity scale for functionalized pores. The scale was validated by studying the effects of pore polarity on quenching of Nile Red fluorescence and on the vibronic band structure of pyrene. Measurements were done in aqueous suspensions of porous particles, proving that the dielectric properties in the pores are different from the bulk solvent. The precise control of pore polarity was used to enhance the catalytic activity of TEMPO in the aerobic oxidation of furfuryl alcohol in water. An inverse relationship was found between pore polarity and activity of TEMPO in the pores, demonstrating that controlling the local polarity around an active site allows modulating the activity of nanoconfined catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201600740 | DOI Listing |
J Chromatogr A
December 2024
HUN-REN Molecular Interactions in Separation Science Research Group, Ifjúság útja 6, H-7624 Pécs, Hungary; Department of Analytical and Environmental Chemistry and Szentágothai Research Center, University of Pécs, Ifjúság útja 6, H-7624 Pécs, Hungary; Institute of Bioanalysis, Medical Scool, University of Pécs, Szigeti út, H-7624 Pécs, Hungary. Electronic address:
Non-destructive chromatographic methods were used to determine the hold-up volumes of four self-packed columns containing embedded phosphate groups. The stationary phases are named Diol-P-C10, Diol-P-C18, Diol-P-Benzyl and Diol-P-Chol. The hydrophobicity of organic ligands bound to the phosphate group increases in the benzyl< decyl < octadecyl
Chemistry
January 2025
Fujian Normal University, School of Chemistry and Materials, No.8 Shangsan Road, ., Fuzhou City, CHINA.
The advancement of high-value CH4 purification technology within the natural gas industry is paramount for industrial processes. Herein, we constructed ZJNU-402, a new porous material characterized by permanent porosity, as an effective adsorbent for separating C3H8/CH4 and C2H6/CH4 mixtures. The findings reveal an outstanding C3H8 adsorption capacity of 68 cm3 g-1 and a moderate C2H6 adsorption rate of 42 cm3 g-1, with a notably lower CH4 adsorption rate of 11 cm3 g-1.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
Elucidating the charging mechanism plays an intrinsic and critical role in the development of high-performance supercapacitors; however, a deep understanding of how this mechanism varies under different charging rates remains challenging. In this study, we investigate the charging mechanism of conductive metal-organic framework (c-MOF) electrodes in ionic liquids, combining electrochemical quartz crystal microbalance and constant-potential molecular dynamics simulations. Both experimental and modeling results reveal a transition of the ion adsorption and desorption modes from anion dominance at low charging rates to ion-exchange governance at high charging rates, significantly reducing the contribution of anions to the capacitance.
View Article and Find Full Text PDFChem Asian J
January 2025
National Cheng Kung University, School of Pharmacy, No.1, University Rd., 70101, Tainan City, TAIWAN.
We report three novel pore-space-partitioned metal‒organic frameworks (MOFs) functionalized with fluorine and hydroxyl groups using 2,3,5,6-tetrafluorobenzene-1,4-dicarboxylic acid (F4-BDC) and a new ligand 3,6-difluoro-2,5-dihydroxybenzene-1,4-dicarboxylic acid (F2(OH)2-BDC) as organic building blocks, with 1,3,5-tris(4-pyridyl)-2,4,6-triazine (TPT) as pore partition agent. With the polar fluorine and hydroxyl groups and the open metal sites being blocked by TPT, moderate molecule-framework interactions can be engineered. These three isoreticular microporous frameworks Mn-TPT-BDC-F4 (NCKU-21), Mn-TPT-BDC-F2(OH)2 (NCKU-22), and Mg-TPT-BDC-F2(OH)2 (NCKU-23) (NCKU = National Cheng Kung University) exhibit distinct single-component gas adsorption behaviors.
View Article and Find Full Text PDFSci Rep
January 2025
Multifunctional Materials Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India.
The utilization of single crystals is exponentially growing in optoelectronic devices due to their exceptional benefits, including high phase purity and the absence of grain boundaries. However, achieving single crystals with a porous structure poses significant challenges. In this study, we present a method for fabricating porous single crystals (porous-SC) of CsAgBiBr and related halide double perovskites using an infrared-assisted spin coating technique.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!