MicroRNAs (miRNAs) are a class of small noncoding RNAs that act as efficient post-transcriptional regulators of gene expression. In 2012, the first cross-kingdom miRNA-based interaction had been evidenced, demonstrating that exogenous miRNAs act in a manner of mammalian functional miRNAs. Starting from this evidence, we defined the concept of cross-kingdom functional homology between plant and mammalian miRNAs as a needful requirement for vegetal miRNA to explicit a regulation mechanism into the host mammalian cell, comparable to the endogenous one. Then, we proposed a new dedicated algorithm to compare plant and mammalian miRNAs, searching for functional sequence homologies between them, and we developed a web software called MirCompare. We also predicted human genes regulated by the selected plant miRNAs, and we determined the role of exogenous miRNAs in the perturbation of intracellular interaction networks. Finally, as already performed by Pirrò and coworkers, the ability of MirCompare to select plant miRNAs with functional homologies with mammalian ones has been experimentally confirmed by evaluating the ability of mol-miR168a to downregulate the protein expression of SIRT1, when its mimic is transfected into human hepatoma cell line G2 (HEPG2) cells. This tool is implemented into a user-friendly web interface, and the access is free to public through the website http://160.80.35.140/MirCompare.

Download full-text PDF

Source
http://dx.doi.org/10.1089/cmb.2016.0059DOI Listing

Publication Analysis

Top Keywords

mirnas
8
exogenous mirnas
8
plant mammalian
8
mammalian mirnas
8
plant mirnas
8
mammalian
5
bioinformatics prediction
4
prediction experimental
4
experimental validation
4
validation micrornas
4

Similar Publications

Diabetes nephropathy (DN) is a prevalent and severe microvascular diabetic complication. Despite the recent developments in germacrone-based therapies for DN, the underlying mechanisms of germacrone in DN remain poorly understood. This study used comprehensive bioinformatics analysis to identify critical microRNAs (miRNAs) and the potential underlying pathways related to germacrone activities.

View Article and Find Full Text PDF

Methamphetamine use disorder has emerged as a significant public health concern globally. This study endeavors to elucidate the alterations in expression changes of miRNAs in the plasma of methamphetamine use disorder and elucidate the alterations in miRNA expression in the plasma of individuals with methamphetamine use disorder and investigate the relationship between these differentially expressed miRNAs and the disorder itself, cravings for methamphetamine, and associated mental disorders. Furthermore, the study seeks to clarify the expression of downstream target molecules of specific miRNAs in the plasma of methamphetamine use disorder, assess the diagnostic utility of these miRNAs and their target molecules, explore their potential as biomarkers, and identify potential targets for the diagnosis and treatment of methamphetamine use disorder.

View Article and Find Full Text PDF

The cis-regulatory elements encoded in an mRNA determine its stability and translational output. While there has been a considerable effort to understand the factors driving mRNA stability, the regulatory frameworks governing translational control remain more elusive. We have developed a novel massively parallel reporter assay (MPRA) to measure mRNA translation, named Nascent Peptide Translating Ribosome Affinity Purification (NaP-TRAP).

View Article and Find Full Text PDF

Modern maize (Zea mays ssp. mays) was domesticated from Teosinte parviglumis (Zea mays ssp. parviglumis), with subsequent introgressions from Teosinte mexicana (Zea mays ssp.

View Article and Find Full Text PDF

microRNAs (miRNAs) are central post-transcriptional gene expression regulators in healthy and diseased states. Despite decades of effort, deciphering miRNA targets remains challenging, leading to an incomplete miRNA interactome and partially elucidated miRNA functions. Here, we introduce microT-CNN, an avant-garde deep convolutional neural network model that moves the needle by integrating hundreds of tissue-matched (in-)direct experiments from 26 distinct cell types, corresponding to a unique training and evaluation set of >60 000 miRNA binding events and ~30 000 unique miRNA-gene target pairs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!