Unlabelled: Patients with chronic ankle instability (CAI) have altered gait patterns, which are characterized by increased inversion positioning during gait. Ankle destabilization devices increase peroneus longus muscle activation during gait, which may increase eversion.
Objective: To determine whether incorporating destabilization devices into a 4-week impairment-based rehabilitation program has beneficial effects on gait biomechanics and surface electromyography (sEMG) compared to impairment-based rehabilitation without destabilization devices in CAI patients.
Design: Randomized controlled trial.
Setting: Laboratory.
Participants: Twenty-six CAI patients.
Outcome Measures: Patients completed baseline gait trials and were randomized into no device or device groups. Groups completed 4-weeks of rehabilitation with or without devices, and then completed post-intervention gait trials. Lower extremity sagittal and frontal plane kinematics and kinetics and sEMG activity were measured.
Results: The device group increased dorsiflexion during mid-late stance and had lower normalized sEMG amplitude for the peroneus longus during early stance and mid-swing after rehabilitation. The no device group had less peroneus brevis sEMG activity during early stance after rehabilitation.
Conclusion: Incorporating destabilization devices in a 4-week rehabilitation program was an effective method of improving dorsiflexion during the stance phase of gait. However, impairment-based rehabilitation, regardless of instability tool, was not effective at improving frontal plane motion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ptsp.2016.02.006 | DOI Listing |
Nat Commun
January 2025
State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.
Polymer dielectric materials are widely used in electrical and electronic systems, and there have been increasing demands on their dielectric properties at high temperatures. Incorporating inorganic nanoparticles into polymers is an effective approach to improving their dielectric properties. However, the agglomeration of inorganic nanoparticles and the destabilization of the organic-inorganic interface at high temperatures have limited the development of nanocomposites toward large-scale industrial production.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, No. 2006, Xiyuan Avenue, High-tech Zone (West Area), 610054, Chengdu, CHINA.
Bismuth oxide (Bi2O3) emerges as a potent catalyst for converting CO2 to formic acid (HCOOH), leveraging its abundant lattice oxygen and the high activity of its Bi-O bonds. Yet, its durability is usually impeded by the loss of lattice oxygen causing structure alteration and destabilized active bonds. Herein, we report an innovative approach via the interstitial incorporation of indium (In) into the Bi2O3, significantly enhancing bond stability and preserving lattice oxygen.
View Article and Find Full Text PDFSmall
December 2024
State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
Gel electrolytes have emerged as a promising solution for enhancing the performance of zinc-ion batteries (ZIBs), particularly in flexible devices. However, they face challenges such as low-temperature inefficiency, constrained ionic conductivity, and poor mechanical strength. To address these issues, this study presents a novel PAMCD gel electrolyte with tunable freezing point and mechanical properties for ZIBs, blending the high ionic conductivity of polyacrylamide with the anion interaction capability of β-cyclodextrin.
View Article and Find Full Text PDFGait Posture
December 2024
Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ear Institute, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA.
Purpose: To investigate how adults with unilateral vestibular hypofunction and healthy controls incorporate visual and auditory cues for postural control in an abstract visual environment.
Methods: Participants stood on foam wearing the HTC Vive, observing an immersive 3-wall display of 'stars' that were either static or dynamic (moving front to back at 32 mm, 0.2 Hz) with no sound, static white noise, or moving white noise played via headphones.
Cell
December 2024
Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA. Electronic address:
Long-term durable remission in patients with B cell malignancies following chimeric antigen receptor (CAR)-T cell immunotherapy remains unsatisfactory, often due to antigen escape. Malignant B cell transformation and oncogenic growth relies on efficient ATP synthesis, although the underlying mechanisms remain unclear. Here, we report that YTHDF2 facilitates energy supply and antigen escape in B cell malignancies, and its overexpression alone is sufficient to cause B cell transformation and tumorigenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!