A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Different metabolite profile and metabolic pathway with leaves and roots in response to boron deficiency at the initial stage of citrus rootstock growth. | LitMetric

Boron (B) is a microelement required for higher plants, and B deficiency has serious negative effect on metabolic processes. We concentrated on the changes in metabolite profiles of trifoliate orange leaves and roots as a consequence of B deficiency at the initial stage of growth by gas chromatography-mass spectrometry (GC-MS)-based metabolomics. Enlargement and browning of root tips were observed in B-deficient plants, while any obvious symptom was not recorded in the leaves after 30 days of B deprivation. The distinct patterns of alterations in metabolites observed in leaves and roots due to B deficiency suggest the presence of specific organ responses to B starvation. The accumulation of soluble sugars was occurred in leaves, which may be attributed to down-regulated pentose phosphate pathway (PPP) and amino acid biosynthesis under B deficiency, while the amount of most amino acids in roots was increased, indicating that the effects of B deficiency on amino acids metabolism in trifoliate orange may be a consequence of disruptions in root tissues and decreased protein biosynthesis. Several important products of shikimate pathway were also significantly affected by B deficiency, which may be related to abnormal growth of roots induced by B deficiency. Conclusively, our results revealed a global perspective of the discriminative metabolism responses appearing between B-deprived leaves and roots and provided new insight into the relationship between B deficiency symptom in roots and the altered amino acids profiling and shikimate pathway induced by B deficiency during seedling establishment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2016.07.007DOI Listing

Publication Analysis

Top Keywords

leaves roots
16
amino acids
12
deficiency
10
deficiency initial
8
initial stage
8
trifoliate orange
8
shikimate pathway
8
induced deficiency
8
roots
7
leaves
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!