Mu Opioid Receptor Actions in the Lateral Habenula.

PLoS One

Department of Neurology, The Wheeler Center for the Neurobiology of Addiction, Alcoholism and Addiction Research Group, University of California San Francisco, San Francisco, California, United States of America.

Published: July 2017

Increased activity of lateral habenula (LHb) neurons is correlated with aversive states including pain, opioid abstinence, rodent models of depression, and failure to receive a predicted reward. Agonists at the mu opioid receptor (MOR) are among the most powerful rewarding and pain relieving drugs. Injection of the MOR agonist morphine directly into the habenula produces analgesia, raising the possibility that MOR acts locally within the LHb. Consequently, we examined the synaptic actions of MOR agonists in the LHb using whole cell patch clamp recording. We found that the MOR selective agonist DAMGO inhibits a subset of LHb neurons both directly and by inhibiting glutamate release onto these cells. Paradoxically, DAMGO also presynaptically inhibited GABA release onto most LHb neurons. The behavioral effect of MOR activation will thus depend upon both the level of intrinsic neuronal activity in the LHb and the balance of activity in glutamate and GABA inputs to different LHb neuronal populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4948872PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159097PLOS

Publication Analysis

Top Keywords

lhb neurons
12
opioid receptor
8
lateral habenula
8
lhb
7
mor
6
receptor actions
4
actions lateral
4
habenula increased
4
increased activity
4
activity lateral
4

Similar Publications

Glutamate delta receptor 1 (GluD1) is a unique synaptogenic molecule expressed at excitatory and inhibitory synapses. The lateral habenula (LHb), a subcortical structure that regulates negative reward prediction error and major monoaminergic systems, is enriched in GluD1. LHb dysfunction has been implicated in psychiatric disorders such as depression and schizophrenia, both of which are associated with GRID1, the gene that encodes GluD1.

View Article and Find Full Text PDF

Appropriate risk evaluation is essential for survival in complex, uncertain environments. Confronted with choosing between certain (safe) and uncertain (risky) options, animals show strong preference for either option consistently across extended time periods. How such risk preference is encoded in the brain remains elusive.

View Article and Find Full Text PDF

Introduction: Diabetes is a metabolic disorder of glucose homeostasis that is a significant risk factor for neurodegenerative diseases, such as Alzheimer's disease, as well as mood disorders, which often precede neurodegenerative conditions. We examined the medial habenulainterpeduncular nucleus (MHb-IPN), as this circuit plays crucial roles in mood regulation, has been linked to the development of diabetes after smoking, and is rich in cholinergic neurons, which are affected in other brain areas in Alzheimer's disease.

Methods: This study aimed to investigate the impact of streptozotocin (STZ)-induced hyperglycemia, a type 1 diabetes model, on mitochondrial and lipid homeostasis in 4% paraformaldehyde-fixed sections from the MHb and IPN of C57BL/6 J male mice, using a recently developed automated pipeline for mitochondrial analysis in confocal images.

View Article and Find Full Text PDF

Lactic acid contributes to the emergence of depression-like behaviors triggered by blue light exposure during sleep.

Ecotoxicol Environ Saf

January 2025

Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China. Electronic address:

The threat posed by light pollution to human health is increasing remarkably. As demand for high-efficiency and bright lighting increases, so does the blue light content from artificial sources. Although animal studies suggested blue light induced depression-like behaviors, human evidence remained limited, and the mechanisms by which blue light affects depression remained elusive.

View Article and Find Full Text PDF

Input-output specific orchestration of aversive valence in lateral habenula during stress dynamics.

J Zhejiang Univ Sci B

April 2024

Department of Neurology and International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China.

Stress has been considered as a major risk factor for depressive disorders, triggering depression onset via inducing persistent dysfunctions in specialized brain regions and neural circuits. Among various regions across the brain, the lateral habenula (LHb) serves as a critical hub for processing aversive information during the dynamic process of stress accumulation, thus having been implicated in the pathogenesis of depression. LHb neurons integrate aversive valence conveyed by distinct upstream inputs, many of which selectively innervate the medial part (LHbM) or lateral part (LHbL) of LHb.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!