The in situ X-ray absorption near edge structure (XANES) measurement and linear combination fitting were applied to monitor phase transformation of titanium dioxide. In this study, TiO2 (TiSG) was prepared by a sol-gel method.using titanium isopropoxide as a precursor. At low preparation temperature, the results revealed the formation of an amorphous structure. To obtain the anatase phase, the calcination at 843 K was necessary. Using phase fraction plot, TiO2 phase-transition can be observed at temperatures between 748 and 778 K and remain unchanged at 873 K.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2016.12099 | DOI Listing |
Ann Surg Oncol
January 2025
Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Background: Atypical ductal hyperplasia (ADH) is a benign proliferative breast lesion. Surgical excision of ADH is often recommended to rule out underlying malignant disease.
Objective: The aim of this study was to evaluate the trends in ADH upgrade rates over time and identify the impact of magnetic resonance imaging (MRI) use on upgrade rates.
Sci Rep
January 2025
Laboratory of Materials, Nanotechnologies and Environment, Center of Sciences of Materials, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP:1014, 10000, Rabat, Morocco.
In this study, novel polyaniline-coated perovskite nanocomposites (PANI@CoTiO and PANI@NiTiO) were synthesized using an in situ oxidative polymerization method and evaluated for the photocatalytic degradation of Rhodamine B (RhB) a persistent organic pollutant. The nanocomposites displayed significantly enhanced photocatalytic efficiency compared to pure perovskites. The 1%wt PANI@NiTiO achieved an impressive 94% degradation of RhB under visible light after 180 min, while 1wt.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen 361005, China.
Sluggish redox kinetics and dendrite growth perplex the fulfillment of efficient electrochemistry in lithium-sulfur (Li-S) batteries. The complicated sulfur phase transformation and sulfur/lithium diversity kinetics necessitate an all-inclusive approach in catalyst design. Herein, a compatible mediator with nanoscale-asymmetric-size configuration by integrating Co single atoms and defective CoTe (Co-CoTe@NHCF) is elaborately developed for regulating sulfur/lithium electrochemistry synchronously.
View Article and Find Full Text PDFAcc Chem Res
January 2025
The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.
ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China.
Innovating nanocatalysts with both high intrinsic catalytic activity and high selectivity is crucial for multi-electron reactions, however, their low mass/electron transport at industrial-level currents is often overlooked, which usually leads to low comprehensive performance at the device level. Herein, a Cl/O etching-assisted self-assembly strategy is reported for synthesizing a self-assembled gap-rich PdMn nanofibers with high mass/electron transport highway for greatly enhancing the electrocatalytic reforming of waste plastics at industrial-level currents. The self-assembled PdMn nanofiber shows excellent catalytic activity in upcycling waste plastics into glycolic acid, with a high current density of 223 mA cm@0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!