A highly flexible and stretchable strain sensor has been prepared by coating chemical reduction of graphene oxide on electrospun polyurethane nanofiber mats. The sensor exhibits an ohmic behavior regardless of applied strains and the current monotonically increases with the increase of the tensile strain. The morphology and stability of electrospun polyurethane nanocomposite mats were also studied. The flexible and stretchable strain sensor has great potential for practical application such as efficient human-motion detection. This cheap and simple process of graphene layer provides an effective fabrication for graphene stretchable electronic devices and strain sensors due to excellent stability and electrical proper.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2016.12055 | DOI Listing |
Small Methods
January 2025
Fujian Provincial Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou, 350108, P. R. China.
The cost-effective and scalable synthesis and patterning of soft nanomaterial composites with improved electrical conductivity and mechanical stretchability remains challenging in wearable devices. This work reports a scalable, low-cost fabrication approach to directly create and pattern crumpled porous graphene/NiS nanocomposites with high mechanical stretchability and electrical conductivity through laser irradiation combined with electrodeposition and a pre-strain strategy. With modulated mechanical stretchability and electrical conductivity, the crumpled graphene/NiS nanocomposite can be readily patterned into target geometries for application in a standalone stretchable sensing platform.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China.
Hydrogels have received great attention due to their molecular designability and wide application range. However, they are prone to freeze at low temperatures due to the existence of mass water molecules, which can damage their flexibility and transparency, greatly limiting their use in cold environments. Although adding cryoprotectants can reduce the freezing point of hydrogels, it may also deteriorate the mechanical properties and face the risk of cryoprotectant leakage.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing 100029, China. Electronic address:
Conductive hydrogels have emerged as excellent candidates for the design and construction of flexible wearable sensors and have attracted great attention in the field of wearable sensors. However, there are still serious challenges to integrating high stretchability, self-healing, self-adhesion, excellent sensing properties, and good biocompatibility into hydrogel wearable devices through easy and green strategies. In this paper, multifunctional conductive hydrogels (PCGB) with good biocompatibility, high tensile (1694 % strain), self-adhesive, and self-healing properties were fabricated by incorporating boric acid (BA) and glucose (Glu) simultaneously into polyacrylic acid (PAA) and chitosan (CS) polymer networks using a simple one-pot polymerization method.
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
Recently, implantable devices for treating peripheral nerve disorders have demonstrated significant potential as neuroprosthetics for diagnostics and electrical stimulation. However, the mechanical mismatch between these devices and nerves frequently results in tissue damage and performance degradation. Although advances are made in stretchable electrodes, challenges, including complex patterning techniques and unstable performance, persist.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China.
This study reports the development of highly conductive and stretchable fibrous membranes based on PVDF/PAN conjugate electrospinning with embedded silver nanoparticles (AgNPs) for wearable sensing applications. The fabrication process integrated conjugate electrospinning of PVDF/PAN, selective dissolution of polyvinylpyrrolidone (PVP) to create porous networks, and uniform AgNP incorporation via adsorption-reduction. Systematic optimization revealed that 10 wt.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!