The orientations of fullerene molecules filled in nanotubes have important influence on the electronic properties of the formed peapods and their transformations such as polymerization under certain conditions. Here we present a investigation on the preferable orientations of tubular C70, C80 and C90 fullerenes confined inside single-walled boron nitride nanotubes (SWBNNTs) by calculating the van der Waals energy between the encapsulated molecule and the hosting nanotube. The minimum entering radius and the energetically favorable radius for encapsulating C70, C80 and C90 have been determined by the reaction energy calculation. We also show that the three studied molecules filled in SWBNNTs exhibit a transition from lying (five-fold axis) orientation to tilted orientation and then to standing orientation (two-fold axis) with increasing the tube radius. The preferable orientations of the encapsulated fullerenes are irrelevant on the tube chirality, but are dependent on the radius.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2016.12051 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!