By varying the molecular charge, shape and amphiphilicity of a series of conformationally distinct diarylureas it is possible to control the levels of phospholipid membrane lysis using membranes composed of bacterial lipid extracts. From the data obtained, it appears as though the lysis activity observed is not due to charge, conformation or amphiphilicity in isolation, but that surface aggregation, H-bonding and other factors may also play a part. The work provides evidence that this class of foldamer possesses potential for optimisation into new antibacterial agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2016.07.017 | DOI Listing |
ACS Nano
January 2025
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China.
Helical structures such as right-handed double helix for DNA and left-handed α-helix for proteins in biological systems are inherently chiral. Importantly, chirality at the nanoscopic level plays a vital role in their macroscopic chiral functionalities. In order to mimic the structures and functions of natural chiral nanoarchitectures, a variety of chiral nanostructures obtained from artificial helical polymers are prepared, which can be directly observed by atomic force microscopy (AFM), scanning tunneling microscopy (STM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM).
View Article and Find Full Text PDFJ Med Chem
January 2025
Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33607 Pessac, France.
Combining helical foldamers with α-peptides can produce α-helix mimetics with a reduced peptide character and enhanced resistance to proteolysis. Previously, we engineered a hybrid peptide-oligourea sequence replicating the N-terminal α-helical domain of p53 to achieve high affinity binding to hDM2. Here, we further advance this strategy by combining the foldamer approach with side chain cross-linking to create more constrained cell-permeable inhibitors capable of effectively engaging the target within cells.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States.
The formation of Lewy bodies (LB) is a pathological hallmark for synucleinopathies, which is an umbrella term for many diseases, including Parkinson's disease, Lewy body dementia, and multiple system atrophy. One of the main components of LB is the aggregates of phosphorylated modification of α-Synuclein at residue 129 (αS-129), a neuronal protein expressed in the dopaminergic neurons in the brain. There are equivocal results about the role of αS-129, suggesting its involvement in both potentiating pathology and a functional role to rescue pathology.
View Article and Find Full Text PDFChemistry
December 2024
Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
In this study, several hydrogen-bonded arylamide foldamers (compounds 1-5) with the same degree of polymerization were designed and synthesized. The polyfluoroiodobenzene or iodoethynyl polyfluoroiodobenzene segment was modified as a halogen donor at the end of the monomer, and pyridine or pyridine oxynitride served as the corresponding halogen acceptor segment. The crystal structure of compound 1 indicates that the supramolecular double helices were constructed by stacking a P helix and an M helix in an antiparallel manner in the direction of intermolecular I⋅⋅⋅O-N halogen bonding.
View Article and Find Full Text PDFNat Rev Chem
January 2025
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, China.
A captivating challenge in chemistry lies in achieving robust and precise binding of uncharged, hydrophilic carbohydrate entities. Although past decades have provided a variety of excellent molecular architectures tailored for carbohydrate recognition, including acyclic receptors, macrocycles and foldamers, recent advances have highlighted the potential of synthetic molecular cages. These structures are equipped with intricately designed cavities that contain bespoke noncovalent binding sites for carbohydrate interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!