Poly(N-vinylcaprolactam) (PVCL) is a new temperature-responsive type of polymer microgel with improved biocompatibility as compared to more commonly used poly(N-isopropylacrylamide) (PNIPAM). Both polymers swell at low temperatures and collapse at high ones, showing a volume phase transition temperature (VPTT) around the physiological temperature. Exploring the interfacial characteristics of thermoresponsive microgels is important due to their potential application in emulsion based systems with tailored stabilities and controlled degradation profiles. In this work, we study the properties of charged PVCL particles at the air-water interface by a combination of adsorption, dilatational rheology and Langmuir monolayers. Although PVCL particles adsorb spontaneously at the air-water interface in both, swollen and collapsed conformations, the interfacial properties show significant differences depending on the swelling state. In particular, the total amount of adsorbed microgels and the rigidity of the monolayer increase as the temperature increases above the VPTT, which is connected to the more compact morphology of the microgels in this regime. Dilatational rheology data show the formation of a very loose adsorbed layer with low cohesivity. In addition, collapsed microgels yield a continuous increase of the surface pressure, whereas swollen microgels show a phase transition at intermediate compressions caused by the deformation of the loose external polymer shell of the particles. We also provide a qualitative interpretation for the surface pressure behavior in terms of microgel-microgel effective pair potentials, and correlate our experimental findings to recent rescaling models that take into account the importance of the internal polymer degrees of freedom in the rearrangement of the conformation of the microgel particles at the interface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6sm01375a | DOI Listing |
Langmuir
January 2025
Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.
The preference of water self-ions (hydronium and hydroxide) toward air/oil-water interfaces is one of the hottest topics in water research due to its importance for understanding properties, phenomena, and reactions of interfaces. In this work, we performed enhanced-sampling molecular dynamics simulations based on state-of-the-art neural network potentials with approximate M06-2X accuracy to investigate the propensity of hydronium and hydroxide ions at air/oil(decane)-water interfaces, which can simultaneously describe well the water autoionization process forming these ions, the recombination of ions, and the ionic distribution along the normal distance to the interface by employing a set of appropriate Voronoi collective variables. A stable ionic double-layer distribution is observed near the air-water interface, while the distribution is different at oil-water interfaces, where hydronium tends to be repelled from the interface into the bulk water, whereas hydroxide, with an interfacial stabilization free energy of -0.
View Article and Find Full Text PDFLangmuir
January 2025
Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
The self-assembly of nanoparticle colloids into large-area monolayers with long-range order is a grand challenge in nanotechnology. Using acoustic energy, i.e.
View Article and Find Full Text PDFLangmuir
January 2025
School of Chemistry, Key Centre for Polymers and Colloids, The University of Sydney, Sydney, New South Wales 2006, Australia.
Polymer Janus nanoparticles with one hard cross-linked polystyrene lobe and one soft film-forming poly(methyl methacrylate--butyl acrylate) lobe were synthesized by reversible addition-fragmentation chain transfer (RAFT)-mediated emulsion polymerization. The Janus nanoparticles adsorbed to oil/water and air/water interfaces, where the soft lobes coalesced, forming films of thickness between 25 and 250 nm; droplets of silicone oil could be stably encapsulated in polymer in this way. When prepared by mechanical mixing without additives, capsules of diameter 5-500 μm could be prepared, and with additives and application of heat, capsules of diameter around 5 μm were achieved, even with highly viscous silicone oil (20,000 cSt).
View Article and Find Full Text PDFJ Pharm Sci
January 2025
Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA, 32310; Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA, 32310. Electronic address:
Monoclonal antibodies (mAb) represent an important class of biologic therapeutics that can treat a variety of diseases including cancer, autoimmune disorders or respiratory conditions (e.g. COVID-19).
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Physics, Central University of Karnataka, Kadaganchi, Kalaburagi, Karnataka-585367, India.
The isomerization kinetics of a liquid crystalline azobenzene dimer, comprising cyanoazobenzene and naphthalene (NAZ6), were investigated at the air-water interface. The Langmuir monolayers of NAZ6 in both its and states were analyzed using surface manometry techniques. The results revealed that NAZ6 molecules in the -state displayed the coexistence of a disordered liquid-expanded phase and an ordered liquid-condensed phase, whereas no such phase transition was observed in the -state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!