Store-Operated Ca Entry (SOCE) contributes to angiotensin II-induced cardiac fibrosis in cardiac fibroblasts.

J Pharmacol Sci

Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China; National and Local Joint Engineering Laboratory of Druggabilitiy Assessment and Evaluation, Sun Yat-sen University, Guangzhou 510006, Guangdong, China; Guangdong Provincial Engineering Laboratory of Druggability and New Drugs Evaluation, China; Guangzhou Key Laboratory of Druggability Assessment for Biologically Active Compounds, China. Electronic address:

Published: November 2016

Store-operated Ca entry (SOCE) is an important mechanism of extracellular Ca entry into cells. It has been proved that SOCE is involved in many pathologic and physiological processes. Two key participants of SOCE, stromal interaction molecule1 (STIM1) and Orai1, have been identified. But their function in cardiac fibroblasts remains elusive. In present study, our findings suggested the expression of STIM1 and Orai1 were increased followed by angiotensin II (Ang II) stimulation in vivo and in vitro. In cultured adult rat cardiac fibroblasts, Ang II led to STIM1 interact with Orai1 and Ca release from intracellular calcium store. In addition, the upregulation of fibronectin (FN), connective tissue growth factor (CTGF) and smooth muscle α-actin (α-SMA) induced by Ang II were attenuated by SOCE inhibitor SKF-96365, similar results were observed by knocking down STIM1 and Orai1. Furthermore, we found that silencing Orai1 by RNA interference also suppressed the translocation of Nuclear Factor of Activated T-cells (NFAT) Isoforms NFATc4 and decreased the phosphorylation of Smad2 and Smad3 induced by Ang II. These results unraveled a novel role of SOCE as a key modulator in the Ang II-induced cardiac fibrosis by mediating Ca influx.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphs.2016.05.008DOI Listing

Publication Analysis

Top Keywords

cardiac fibroblasts
12
stim1 orai1
12
store-operated entry
8
entry soce
8
ii-induced cardiac
8
cardiac fibrosis
8
induced ang
8
soce
6
cardiac
5
orai1
5

Similar Publications

Background: Dilated cardiomyopathy (DCM) stands as one of the most prevalent and severe causes of heart failure. Inflammation plays a pivotal role throughout the progression of DCM to heart failure, while age acts as a natural predisposing factor for all cardiovascular diseases. These two factors often interact, contributing to cardiac fibrosis, which is both a common manifestation and a pathogenic driver of adverse remodeling in DCM-induced heart failure.

View Article and Find Full Text PDF

MnSOD non-acetylation mimic knock-in mice exhibit dilated cardiomyopathy.

Free Radic Biol Med

January 2025

Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, TX, USA. Electronic address:

Manganese superoxide dismutase (MnSOD/SOD2) is an essential mitochondrial enzyme that detoxifies superoxide radicals generated during oxidative respiration. MnSOD/SOD2 lysine 68 acetylation (K68-Ac) is an important post-translational modification (PTM) that regulates enzymatic activity, responding to nutrient status or oxidative stress, and elevated levels have been associated with human illness. To determine the in vivo role of MnSOD-K68 in the heart, we used a whole-body non-acetylation mimic mutant (MnSOD) knock-in mouse.

View Article and Find Full Text PDF

Cardiogenic shock (CS) carries a 30-50% in-hospital mortality rate, with little improvement in outcomes in the last decade. Challenges in improving outcomes are closely linked to the frequent late presentation or diagnosis of CS where the 'point of no return' has often passed, leading to haemodynamic dysregulation, progressive myocardial depression, hypotension, and a downward spiral of hypoperfusion, organ dysfunction and decreasing myocardial function, driven by inflammation and metabolic derangements. Novel therapeutic interventions may have varying efficacy depending on the type and stage of shock in which they are applied.

View Article and Find Full Text PDF

Piscine orthoreovirus-1 and 3 (PRV-1, PRV-3) cause highly prevalent infection in cultured salmonids and can induce heart and skeletal muscle inflammation (HSMI) resulting in economic losses in aquaculture. However, to date, PRV-1 and PRV-3 have withstood replication in continuous cell lines. In this study, we used beating heart cell cultures obtained from different developmental stages of rainbow trout (Oncorhynchus mykiss) (RTC-L and RTC-A) and tested their ability to sustain replication of PRV-1 and PRV-3.

View Article and Find Full Text PDF

Enhancing Cardiomyocyte Purity through Lactate-Based Metabolic Selection.

Tissue Eng Regen Med

January 2025

Department of Physiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.

Background: Direct reprogramming of fibroblasts into chemically induced cardiomyocyte-like cells (CiCMs) through small molecules presents a promising cell source for cardiac regeneration and therapeutic development. However, the contaminating non-cardiomyocytes, primarily unconverted fibroblasts, reduce the effectiveness of CiCMs in various applications. This study investigated a metabolic selection approach using lactate to enrich CiCMs by exploiting the unique metabolic capability of cardiomyocytes to utilize lactate as an alternative energy source.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!