Design and synthesis of aminothiazole modulators of the gamma-secretase enzyme.

Bioorg Med Chem Lett

Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive MC 0624, La Jolla, CA 92093-0624, United States. Electronic address:

Published: August 2016

AI Article Synopsis

  • A series of new aminothiazole-derived γ-secretase modulators were designed to enhance their effectiveness and drug-like qualities.
  • The modified compound 28 showed strong activity in inhibiting Aβ42, along with improved drug properties like solubility.
  • Testing in mice indicated that compound 28 has good brain penetration and favorable pharmacokinetics, making it a promising candidate for further development.

Article Abstract

The design and construction of a series of novel aminothiazole-derived γ-secretase modulators is described. The incorporation of heterocyclic replacements of the terminal phenyl D-ring of lead compound 1 was conducted in order to align potency with favorable drug-like properties. γ-Secretase modulator 28 displayed good activity for in vitro inhibition of Aβ42, as well as substantial improvement in ADME and physicochemical properties, including aqueous solubility. Pharmacokinetic evaluation of compound 28 in mice revealed good brain penetration, as well as good clearance, half-life, and volume of distribution which collectively support the continued development of this class of compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2016.07.011DOI Listing

Publication Analysis

Top Keywords

design synthesis
4
synthesis aminothiazole
4
aminothiazole modulators
4
modulators gamma-secretase
4
gamma-secretase enzyme
4
enzyme design
4
design construction
4
construction series
4
series novel
4
novel aminothiazole-derived
4

Similar Publications

Highly Optimized CNS Penetrant Inhibitors of EGFR Exon20 Insertion Mutations.

J Med Chem

January 2025

Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China.

Despite recent advances in the inhibition of EGFR (epidermal growth factor receptor), there remains a clinical need for new EGFR Exon20 insertion (Ex20Ins) inhibitors that spare EGFR WT. Herein, we report the discovery and optimization of two chemical series leading to ether and biaryl as potent, selective, and brain-penetrant inhibitors of Ex20Ins mutants. Building on our earlier discovery of alkyne which allowed access to CNS property space for an Ex20Ins inhibitor, we utilized structure-based design to move to lower lipophilicity and lower CL compounds while maintaining a WT selectivity margin.

View Article and Find Full Text PDF

Enthalpy is often the focal point when designing monomers for polymer circularity, but much less is explored on how entropy can be exploited to create polymers with synergistic circularity and properties. Here, we design a series of spiro-lactones (SLs) with closed-chain cycloalk(en)yl substituents at the α,α-position of δ-valerolactone (δVL), which, when combined with the parent δVL and -α,α-dialkyl-substituted δVL with open-chain alkyl groups, provide a desired platform for exploring the circular polymer design by focusing on the entropy change of polymerization. These SLs exhibit finely balanced (de)polymerizability that is regulated chiefly by entropy differentiation, allowing both the facile synthesis of polyester PSLs ( up to 1000 kg mol) in a living fashion and selective depolymerization of the PSLs to completely recover monomers under mild conditions (using a recyclable catalyst at 100 °C).

View Article and Find Full Text PDF

To assess whether spinal manipulative therapy (SMT) application procedures (ie, target, thrust, and region) impacted changes in pain and disability for adults with spine pain. Systematic review with network meta-analysis. We searched PubMed and Epistemonikos for systematic reviews indexed up to February 2022 and conducted a systematic search of 5 databases (MEDLINE, EMBASE, CENTRAL [Cochrane Central Register of Controlled Trials], PEDro [Physiotherapy Evidence Database], and Index to Chiropractic Literature) from January 1, 2018, to September 12, 2023.

View Article and Find Full Text PDF

This study presents T-1-NBAB, a new compound derived from the natural xanthine alkaloid theobromine, aimed at inhibiting VEGFR-2, a crucial protein in angiogenesis. T-1-NBAB's potential to interacts with and inhibit the VEGFR-2 was indicated using in silico techniques like molecular docking, MD simulations, MM-GBSA, PLIP, essential dynamics, and bi-dimensional projection experiments. DFT experiments was utilized also to study the structural and electrostatic properties of T-1-NBAB.

View Article and Find Full Text PDF

Background: Ras-GTPase-activating protein (GAP)-binding protein 1 (G3BP1) emerges as a pivotal oncogenic gene across various malignancies, notably including nasopharyngeal carcinoma (NPC). The use of automated image analysis tools for immunohistochemical (IHC) staining of particular proteins is highly beneficial, as it could reduce the burden on pathologists. Interestingly, there have been no prior studies that have examined G3BP1 IHC staining using digital pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!