Genetics-based studies of women with polycystic ovary syndrome (PCOS) implicate >20 PCOS risk genes that collectively account for <10% of PCOS. Clinicians now consider that either rare alleles or non-genetic, potentially epigenetic, developmental origins may contribute key pathogenic components to >90% of PCOS cases. Animal models convincingly demonstrate excess fetal testosterone exposure in females as a reliable, epigenetic, developmental origin for PCOS-like traits. In particular, nonhuman primates (NHPs) provide the most faithful emulation of PCOS-like pathophysiology, likely because of close similarities to humans in genomic, developmental, reproductive and metabolic characteristics, as well as aging. Recent appreciation of potential molecular mechanisms contributing to enhanced LH action in both PCOS women (GWAS-based) and PCOS-like monkeys (DNA methylation-based) suggest commonality in pathogenic origins. This review examines the translational relevance of NHP studies to PCOS, identifying characteristics of newborn females at risk for PCOS-like traits and potential prepubertal treatment interventions to ameliorate PCOS onset.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5673087PMC
http://dx.doi.org/10.2174/1381612822666160715133437DOI Listing

Publication Analysis

Top Keywords

pcos-like traits
12
polycystic ovary
8
ovary syndrome
8
pcos
8
syndrome pcos
8
epigenetic developmental
8
pcos-like
5
translational insight
4
insight polycystic
4
pcos female
4

Similar Publications

Anti-Müllerian hormone (AMH) is an important component within androgen receptor (AR)-regulated pathways governing the hyperandrogenic origin of polycystic ovary syndrome (PCOS). In women with PCOS, granulosa cell AMH overexpression in developing ovarian follicles contributes to elevated circulating AMH levels beginning at birth and continuing in adolescent daughters of PCOS women. A 6 to 7% incidence among PCOS women of gene variants coding for AMH or its receptor, AMHR2, suggests genetic contributions to AMH-related pathogenesis.

View Article and Find Full Text PDF

Investigating GABA Neuron-Specific Androgen Receptor Knockout in two Hyperandrogenic Models of PCOS.

Endocrinology

May 2024

Centre of Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand 9054.

Androgen excess is a hallmark feature of polycystic ovary syndrome (PCOS), the most common form of anovulatory infertility. Clinical and preclinical evidence links developmental or chronic exposure to hyperandrogenism with programming and evoking the reproductive and metabolic traits of PCOS. While critical androgen targets remain to be determined, central GABAergic neurons are postulated to be involved.

View Article and Find Full Text PDF

Polycystic ovary syndrome (PCOS) is associated with a low-grade inflammation, but it is unknown how hyperandrogenism, the hallmark of PCOS, affects the immune system. Using a PCOS-like mouse model, it is demonstrated that hyperandrogenism affects immune cell populations in reproductive, metabolic, and immunological tissues differently in a site-specific manner. Co-treatment with an androgen receptor antagonist prevents most of these alterations, demonstrating that these effects are mediated through androgen receptor activation.

View Article and Find Full Text PDF

Troxerutin dampened hypothalamic neuroinflammation via microglial IL-22/IL-22R1/IRF3 activation in dihydrotestosterone-induced polycystic ovary syndrome rats.

Phytomedicine

February 2024

Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221009, PR China. Electronic address:

Background: Polycystic ovary syndrome (PCOS) is the most common reproductive-endocrine condition in premenopausal women. Troxerutin, a common clinical anti-coagulant agent, was shown to work as a strong IL-22 boosting agent counteracting the hyperactivated gonadotrophin releasing hormone (GnRH) neurons and heightened GnRH release, the neuroendocrine origin of PCOS with unknown mechanism in rats. Exploring the off-label use of troxerutin medication for PCOS is thus sorely needed.

View Article and Find Full Text PDF

Overactivation of GnRH neurons is sufficient to trigger polycystic ovary syndrome-like traits in female mice.

EBioMedicine

November 2023

Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France; Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France. Electronic address:

Background: Polycystic ovary syndrome (PCOS) is the most common endocrine disorder leading to anovulatory infertility. Abnormalities in the central neuroendocrine system governed by gonadotropin-releasing hormone (GnRH) neurons might be related to ovarian dysfunction in PCOS, although the link in this disordered brain-to-ovary communication remains unclear. Here, we manipulated GnRH neurons using chemogenetics in adult female mice to unveil whether chronic overaction of these neurons would trigger PCOS-like hormonal and reproductive impairments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!