An antibiotic target ranking and prioritization pipeline combining sequence, structure and network-based approaches exemplified for Serratia marcescens.

Gene

Department of Bioinformatics, Biocenter, Am Hubland, D-97074 Würzburg, Germany; EMBL Heidelberg, BioComputing Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany. Electronic address:

Published: October 2016

We investigate a drug target screening pipeline comparing sequence, structure and network-based criteria for prioritization. Serratia marcescens, an opportunistic pathogen, serves as test case. We rank according to (i) availability of three dimensional structures and lead compounds, (ii) not occurring in man and general sequence conservation information, and (iii) network information on the importance of the protein (conserved protein-protein interactions; metabolism; reported to be an essential gene in other organisms). We identify 45 potential anti-microbial drug targets in S. marcescens with KdsA involved in LPS biosynthesis as top candidate drug target. LpxC and FlgB are further top-ranked targets identified by interactome analysis not suggested before for S. marcescens. Pipeline, targets and complementarity of the three approaches are evaluated by available experimental data and genetic evidence and against other antibiotic screening pipelines. This supports reliable drug target identification and prioritization for infectious agents (bacteria, parasites, fungi) by these bundled complementary criteria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2016.07.030DOI Listing

Publication Analysis

Top Keywords

drug target
12
sequence structure
8
structure network-based
8
serratia marcescens
8
antibiotic target
4
target ranking
4
ranking prioritization
4
prioritization pipeline
4
pipeline combining
4
combining sequence
4

Similar Publications

Background And Aim: The high rate of tumor growth results in an increased need for amino acids. As solute carriers (SLC) transporters are capable of transporting different amino acids, cancer may develop as a result of these transporters' over-expression due to their complex formation with other biological molecules. Therefore, this review investigated the role of SLC transporters in the progression of cancer.

View Article and Find Full Text PDF

-related disorder (SRD) is a developmental and epileptic encephalopathy caused by a disruption of the gene. At the beginning of 2024, it is one of many rare monogenic brain disorders without disease-modifying treatments, but that is changing. This article chronicles the last 5 years, beginning when treatments for SRD were not publicly in development, to the start of 2024 when many SRD-specific treatments are advancing.

View Article and Find Full Text PDF

Thio-ProTide strategy: A novel HS donor-drug conjugate (DDC) alleviates hepatic injury innate lysosomal targeting.

Acta Pharm Sin B

December 2024

Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China.

Hydrogen sulfide (HS) is a gas signaling molecule with versatile bioactivities; however, its exploitation for disease treatment appears challenging. This study describes the design and characterization of a novel type of HS donor-drug conjugate (DDC) based on the thio-ProTide scaffold, an evolution of the ProTide strategy successfully used in drug discovery. The new HS DDCs achieved hepatic co-delivery of HS and an anti-fibrotic drug candidate named hydronidone, which synergistically attenuated liver injury and resulted in more sufficient intracellular drug exposure.

View Article and Find Full Text PDF

The respiratory tract is susceptible to various infections and can be affected by many serious diseases. Vaccination is one of the most promising ways that prevent infectious diseases and treatment of some diseases such as malignancy. Direct delivery of vaccines to the respiratory tract could mimic the natural process of infection and shorten the delivery path, therefore unique mucosal immunity at the first line might be induced and the efficiency of delivery can be high.

View Article and Find Full Text PDF

Discovery of a novel exceptionally potent and orally active Nur77 ligand NB1 with a distinct binding mode for cancer therapy.

Acta Pharm Sin B

December 2024

State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University, Xiamen 361102, China.

The orphan nuclear receptor Nur77 is emerging as an attractive target for cancer therapy, and activating Nur77's non-genotypic anticancer function has demonstrated strong therapeutic potential. However, few Nur77 site B ligands have been identified as excellent anticancer compounds. There are no co-crystal structures of effective anticancer agents at Nur77 site B, which greatly limits the development of novel Nur77 site B ligands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!