HP1BP3, a Chromatin Retention Factor for Co-transcriptional MicroRNA Processing.

Mol Cell

Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; International Institute for Integrated Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Electronic address:

Published: August 2016

Recent studies suggest that the microprocessor (Drosha-DGCR8) complex can be recruited to chromatin to catalyze co-transcriptional processing of primary microRNAs (pri-miRNAs) in mammalian cells. However, the molecular mechanism of co-transcriptional miRNA processing is poorly understood. Here we find that HP1BP3, a histone H1-like chromatin protein, specifically associates with the microprocessor and promotes global miRNA biogenesis in human cells. Chromatin immunoprecipitation (ChIP) studies reveal genome-wide co-localization of HP1BP3 and Drosha and HP1BP3-dependent Drosha binding to actively transcribed miRNA loci. Moreover, HP1BP3 specifically binds endogenous pri-miRNAs and facilitates the Drosha/pri-miRNA association in vivo. Knockdown of HP1BP3 compromises pri-miRNA processing by causing premature release of pri-miRNAs from the chromatin. Taken together, these studies suggest that HP1BP3 promotes co-transcriptional miRNA processing via chromatin retention of nascent pri-miRNA transcripts. This work significantly expands the functional repertoire of the H1 family of proteins and suggests the existence of chromatin retention factors for widespread co-transcriptional miRNA processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4975613PMC
http://dx.doi.org/10.1016/j.molcel.2016.06.014DOI Listing

Publication Analysis

Top Keywords

chromatin retention
12
co-transcriptional mirna
12
mirna processing
12
hp1bp3
6
processing
6
chromatin
6
co-transcriptional
5
mirna
5
hp1bp3 chromatin
4
retention factor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!