Amylin is an endocrine hormone and is a member of the family of amyloid peptides and proteins that emerge as potential scaffolds by self-assembly processes. Zn(2+) ions can bind to amylin peptides to form self-assembled Zn(2+)-amylin oligomers. In the current work the binding sites of Zn(2+) ions in the self-assembled amylin oligomers at various concentrations of zinc have been investigated. Our results yield two conclusions. First, in the absence of Zn(2+) ions polymorphic states (i.e. various classes of amylin oligomers) are obtained, but when Zn(2+) ions bind to amylin peptides to form Zn(2+)-amylin oligomers, the polymorphism is decreased, i.e. Zn(2+) ions bind only to specific classes of amylin. At low concentrations of Zn(2+) ions the polymorphism is smaller than at high concentrations. Second, the structural features of the self-assembled amylin oligomers are not affected by the presence of Zn(2+) ions. This study proposes new molecular mechanisms of the self-assembly of Zn(2+)-amylin oligomers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6cp04105a | DOI Listing |
Langmuir
January 2025
ESYCOM, CNRS-UMR 9007, Université Gustave Eiffel, F-77454 Marne-la-Vallée, France.
This study investigates the synthesis, characterization, and functional properties of well-aligned zinc oxide (ZnO) nanowires (NWs) obtained by a two-step hydrothermal method. ZnO NWs were grown on silicon substrates precoated with a ZnO seed layer. The growth process was conducted at 90 °C for different durations (2, 3, and 4 h) to examine the time-dependent evolution of the nanowire properties.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
More than 50 % of proteins bind to metal ions. Interactions between metal ions and proteins, especially coordinated interactions, are essential for biological functions, such as maintaining protein structure and signal transport. Physiological metal-ion binding prediction is pivotal for both elucidating the biological functions of proteins and for the design of new drugs.
View Article and Find Full Text PDFACS Omega
January 2025
Institute of Chemistry, UFU, Federal University of Uberlândia, Uberlândia, Minas Gerais 38400-902, Brazil.
Synthetic antioxidants are often introduced to biodiesel to increase its oxidative stability, and -butyl hydroquinone (TBHQ) has been selected due to its high efficiency for this purpose. The monitoring of antioxidants in biodiesel therefore provides information on the oxidative stability of biodiesels. Herein, a laser-induced graphene (LIG) electrode is introduced as a new sensor for detecting -butyl hydroquinone (TBHQ) in biodiesel samples.
View Article and Find Full Text PDFSmall Methods
January 2025
Science Island Branch of Graduate School University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
The aqueous zinc ion batteries (AZIBs) are chronically plagued by the inevitable side-reaction and uneven Zn planets stack. Through regulating the water activity and Zn crystal dynamics could effectively relieve those anode/electrolyte interface problems. The (2-hydroxypropyl)-β-cyclodextrin (HBCD), characterized by the excluded-volume and mitigating zinc-flux aggregation effect, is chosen as the electrolyte additive to tail the anode/electrolyte interface.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shandong university, School of Chemistry and Chemical Engineering, No 27, Shandananlu,, 250100, Jinan, CHINA.
The regulation of artificial interphase for advanced Zn anode is an effective solution to achieve superior electrochemical performance for aqueous batteries. However, the deployment of atomically precise architectures and ligand engineering to achieve functionalization-oriented regulatory screening is lacking, which is hindered by higher requirements for synthetic chemistry and structural chemistry. Herein, we have first performed ligand engineering which selected zinc ion trapping ligands (-CH3) based on the coordination effect, and zinc substrate binding ligands (-N=N-xC6H5) based on the electrostatic interaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!